
Academic Year: 2023-2024

DEPARTMENT OF INFORMATION TECHNOLOGY

Cloud Computing

Faculty Name: Dr. M.N.Rao

Teaching Learning Methodology: Competency Based Learning

Topic Name: Deployment Models

 Competency-Based Learning (CBL) is an educational approach that focuses on

students demonstrating mastery of specific skills or competencies, rather than

progressing through a course based solely on time spent in class. The goal is to ensure

that students can apply what they've learned in real-world situations, mastering

content at their own pace.

In CBL, learning is personalized, students advance after demonstrating proficiency,

and assessments are directly linked to key competencies, rather than simply

completing assignments or tests. It emphasizes active learning, critical thinking, and

practical application.

Deployment Models:

Public Cloud Model

 Definition: A public cloud is a cloud deployment model where services and

infrastructure are provided by a third-party cloud service provider (CSP) and

are made available to the general public. Examples include platforms like

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud.

 Competencies to Master:

o Understanding the public cloud architecture (e.g., infrastructure as a

service (IaaS), platform as a service (PaaS), and software as a service

(SaaS)).

o Familiarity with the major cloud providers (AWS, Azure, GCP).

o Skills in provisioning and scaling resources.

o Cloud cost optimization and billing models.

o Cloud security in public environments (e.g., shared responsibility

models).

 Example of Competency-Based Learning Activity:

o Scenario: A learner must configure a simple web application on AWS

using EC2 instances, S3 storage, and RDS databases. They would need

to demonstrate competency in managing resources efficiently and

ensuring the application is secure.

o Assessment: The learner would need to demonstrate the ability to

provision and configure cloud resources based on a given project.

Progress would be assessed when they meet specific performance

criteria (e.g., correct architecture, scalability, cost-effective resource

usage).

2. Private Cloud Model

 Definition: A private cloud is a cloud deployment model where the cloud

infrastructure is used exclusively by a single organization. It can be hosted on-

premises or by a third-party provider but is not shared with others.

 Competencies to Master:

o Designing and deploying a private cloud infrastructure.

o Virtualization technologies (e.g., VMware, OpenStack).

o Cloud management platforms and automation tools for provisioning.

o Security and compliance in private cloud environments.

o Integration of private cloud with existing on-premise infrastructure.

 Example of Competency-Based Learning Activity:

o Scenario: The learner must deploy a private cloud infrastructure using

OpenStack, ensuring that resources are managed internally and

securely.

o Assessment: The learner will be required to demonstrate their ability

to configure virtual machines, manage networking, and set up storage

solutions within the private cloud. Success would be assessed by

evaluating the learner’s ability to configure, secure, and scale the

private cloud as needed.

3. Hybrid Cloud Model

 Definition: A hybrid cloud is a cloud deployment model that combines both

private and public clouds, allowing for data and applications to be shared

between them. This model enables businesses to move workloads between

private and public environments depending on needs.

 Competencies to Master:

o Designing hybrid cloud architectures and workflows.

o Managing cloud interoperability and integration between public and

private clouds.

o Understanding and implementing cloud bursting.

o Multi-cloud management and orchestration tools.

o Hybrid cloud security and compliance.

 Example of Competency-Based Learning Activity:

o Scenario: Learners are tasked with designing and deploying a hybrid

cloud solution that balances workloads between AWS and an on-

premise private cloud based on demand.

o Assessment: The learner will demonstrate their ability to architect,

configure, and automate workflows that transition seamlessly between

the two environments. Assessment would include testing for correct

security configurations, compliance with data residency rules, and

effective load balancing between clouds.

4. Community Cloud Model

 Definition: A community cloud is a cloud deployment model shared by

several organizations with common concerns or goals (e.g., industry-specific

regulations, shared research purposes). It can be hosted on-premise or by a

third-party provider.

 Competencies to Master:

o Understanding community cloud architecture and its use cases (e.g.,

for research institutions or healthcare organizations).

o Designing solutions that meet the shared needs of the community,

ensuring data sharing and collaboration.

o Managing multi-tenant environments with a focus on security and data

governance.

o Integration with third-party cloud providers or on-premise

infrastructure.

 Example of Competency-Based Learning Activity:

o Scenario: The learner is tasked with deploying a community cloud for

a group of healthcare organizations that require secure data sharing and

collaboration, ensuring compliance with health data regulations (e.g.,

HIPAA).

o Assessment: Learners will need to demonstrate their ability to design

secure data-sharing protocols, configure access controls, and deploy

collaborative tools while ensuring regulatory compliance. The success

of the project would be measured by the quality of the implementation

and security configurations.

Examples Competencies for Cloud Deployment Models:

1. Public Cloud:

o Provision EC2 instances in AWS.

o Implement auto-scaling and load balancing on AWS.

o Use IAM (Identity and Access Management) to secure cloud resources.

2. Private Cloud:

o Deploy and manage virtual machines using VMware or OpenStack.

o Set up network isolation and storage management in a private cloud

environment.

o Implement backup and disaster recovery strategies for private cloud

environments.

3. Hybrid Cloud:

o Design an architecture that utilizes both public and private clouds for

workload balancing.

o Implement data synchronization between public and private clouds.

o Use hybrid cloud management tools like Azure Arc or AWS Outposts.

4. Community Cloud:

o Design a cloud environment that meets regulatory requirements (e.g.,

HIPAA, GDPR) for multiple organizations.

o Configure access control policies for a community cloud shared by

multiple institutions.

o Implement collaborative tools and secure data sharing protocols in a

community cloud.

Conclusion:

Competency-based learning provides a flexible, practical approach to mastering cloud

deployment models. By focusing on mastery and applying real-world scenarios, this

learning model ensures that professionals can confidently work within any cloud

deployment mode be it public, private, hybrid, or community cloud. It tackle the

complexities of cloud technologies, from the fundamentals to advanced

implementations.

Academic Year: 2023-2024

Department of Information Technology

Information Retrieval Systems

Faculty Name: Dr. CH.Ramesh

Teaching Methodology: Case Study Based Learning

Topic: Distributed information Retrieval

Distributed Information Retrieval (DIR) is an essential topic in computer science,

focusing on searching and retrieving information from multiple distributed sources.

Effective teaching of DIR requires combining theoretical understanding, practical

applications, and active learning strategies. Below are detailed methods to enhance

learning for this topic:

1. Lecture-Based Teaching

Purpose: Introduce foundational concepts and theories.

 Content Coverage:

o Basics of Information Retrieval (IR).

o Key differences between centralized and distributed IR.

o Components of DIR: source selection, query translation, and result

merging.

o Examples of real-world DIR systems (e.g., federated search engines).

 Tools:

o Use slides with diagrams explaining the architecture and flow of DIR

systems.

o Include animations or visualizations to demonstrate query processing

in distributed systems.

2. Hands-On Lab Sessions

Purpose: Provide practical experience in implementing DIR systems.

 Activities:

o Setting up a distributed environment using tools like Apache Solar or

Elastic search.

o Simulating distributed search across multiple databases.

o Writing programs to merge results from multiple sources using Python

libraries.

 Outcome: Students develop small-scale DIR projects to understand the end-to-

end flow.

3. Case Studies and Real-World Examples

Purpose: Connect theory with real-world applications.

 Discuss case studies like Google Scholar, PubMed, or federated search in

digital libraries.

 Analyze the architecture of popular search engines that use distributed IR

principles.

 Assign tasks to evaluate the pros and cons of DIR systems in specific

scenarios (e.g., handling big data or privacy concerns).

4. Problem-Based Learning (PBL)

Purpose: Foster critical thinking and problem-solving skills.

 Scenario: "Design a DIR system for an e-commerce platform with global

warehouses."

 Steps:

o Form small groups to discuss challenges like latency, scalability, and

data synchronization.

o Encourage brainstorming and presenting proposed solutions.

 Outcome: Students gain practical insights into the complexities of DIR.

5. Flipped Classroom

Purpose: Promote active participation and self-paced learning.

 Pre-Class Activity: Assign readings or videos on the fundamentals of IR and

DIR.

 In-Class Activity: Conduct discussions, quizzes, and collaborative tasks to

solve real-world problems related to DIR.

 Outcome: Students come prepared and engage more deeply during class.

6. Simulation and Modeling

Purpose: Visualize and simulate DIR processes.

 Use simulation tools to demonstrate:

o Query distribution among different servers.

o Performance comparison between centralized and distributed systems.

o Network latency and its impact on DIR.

 Tools: NS3 (Network Simulator), AnyLogic, or custom Python scripts.

7. Gamification

Purpose: Make learning interactive and engaging.

 Develop challenges where students:

o Compete to design the most efficient DIR system.

o Optimize query distribution and result merging algorithms.

 Reward students for innovative solutions or high performance in

simulations.

8. Project-Based Learning

Purpose: Encourage independent research and application.

 Projects:

o Building a federated search engine for specific domains (e.g., medical

databases).

o Evaluating DIR systems for mobile and IoT environments.

o Research on privacy-preserving DIR using secure multi-party

computation or encryption.

 Deliverables: Students submit a report and give presentations on their projects.

9. Collaborative Learning

Purpose: Enhance teamwork and peer-to-peer learning.

 Organize group activities to discuss recent advancements in DIR.

 Assign group tasks like comparing DIR protocols or evaluating scalability

strategies.

10. Assessment Methods

Purpose: Evaluate understanding and application skills.

 Methods:

o Quizzes on DIR concepts and algorithms.

o Assignments on designing and analyzing DIR systems.

o Oral presentations on recent research papers.

o Peer evaluation in group activities.

o Final projects demonstrating a working DIR system.

11. Incorporating AI and Modern Tools

Purpose: Stay relevant with industry trends.

 Discuss the role of machine learning in DIR (e.g., for query understanding or

ranking).

 Explore the use of tools like Elastic Stack, Apache Nutch, and other big data

frameworks.

Conclusion

By combining theoretical and practical approaches, students can gain a deep

understanding of Distributed Information Retrieval. Using diverse methods ensures

that learners with different learning styles are effectively engaged, fostering both

foundational knowledge and real-world application.

Faculty

Academic Year: 2023-2024

Department of Information Technology

Programming for Problem Solving

Faculty Name: D.Anil

Teaching Methodology: Demonstration based learning

Topic name: Loops in C

Demonstration-Based Learning refers to a teaching method where learners acquire

knowledge and skills by observing demonstrations and then practicing those skills

themselves. This method emphasizes learning through examples and hands-on

activities. In the context of programming (like in C), it means walking through code

examples, explaining how things work, and then giving learners opportunities to

implement similar code themselves.

For loops, while loops, and do-while loops are great examples where demonstration-

based learning can be applied effectively.

Demonstrative Learning of Loops in C

In C, loops are essential constructs that allow a block of code to be executed multiple

times. The primary types of loops in C are:

1. For Loop

2. While Loop

3. Do-While Loop

Let’s walk through each type of loop with examples and explanations to help you

learn through demonstration.

1. For Loop

A for loop is typically used when you know how many times you need to repeat a

block of code.

Syntax:

for (initialization; condition; increment) {

 // code to be executed

}

Example: Printing numbers from 1 to 5

#include <stdio.h>

int main() {

 for (int i = 1; i <= 5; i++) {

 printf("%d\n", i);

 }

 return 0;

}

Explanation:

 Initialization: int i = 1 initializes the loop counter.

 Condition: i <= 5 means the loop will continue as long as i is less than or

equal to 5.

 Increment: i++ increments the value of i after each iteration.

Output:

1

2

3

4

5

2. While Loop

A while loop is used when you want to repeat a block of code an unknown number of

times, as long as a given condition remains true.

Syntax:

while (condition) {

 // code to be executed

}

Example: Printing numbers from 1 to 5

#include <stdio.h>

int main() {

 int i = 1;

 while (i <= 5) {

 printf("%d\n", i);

 i++; // Increment the counter

 }

 return 0;

}

Explanation:

 The loop continues as long as i <= 5 is true.

 i++ increments i after each iteration.

Output:

1

2

3

4

5

3. Do-While Loop

A do-while loop is similar to the while loop, but it guarantees at least one execution of

the code block because the condition is checked after the loop runs.

Syntax:

do {

 // code to be executed

} while (condition);

Example: Printing numbers from 1 to 5

#include <stdio.h>

int main() {

 int i = 1;

 do {

 printf("%d\n", i);

 i++; // Increment the counter

 } while (i <= 5);

 return 0;

}

Explanation:

 The loop executes once even if the condition is false initially.

 i++ increments i after each iteration.

Output:

1

2

3

4

5

Summary of Loops:

 For Loop: Best when you know the number of iterations beforehand.

 While Loop: Best when you want to repeat an action until a condition

becomes false, and you might not know how many times it will run.

 Do-While Loop: Best when you need to ensure the loop runs at least once,

regardless of the condition.

By demonstrating these loops step-by-step, you can grasp how each loop structure

operates and understand when to use each type depending on your specific needs in a

program.

Faculty

Academic Year: 2023-2024

DEPARTMENT OF INFORMATION TECHNOLOGY

Data Warehousing and Data Mining

Faculty Name: M.Suresh Babu

Teaching Methodology: Collaborative Learning

Topic Name: Apriori Algorithm

Introduction to Collaborative Learning

Collaborative Learning is a student-centered teaching methodology that emphasizes

active participation and teamwork. It involves students working together in small

groups to solve problems, complete tasks, or create projects, fostering deeper

understanding through shared knowledge and experiences.

The method is based on the idea that learning is a social process and that students

benefit more from working together than learning in isolation. It encourages peer-to-

peer interaction, critical thinking, communication, and problem-solving skills.

Key Features of Collaborative Learning

1. Active Participation: Students engage in discussions, share ideas, and contribute to the
group’s success.

2. Teamwork: Students work together to achieve a common learning goal.
3. Shared Responsibility: Each member of the group is responsible for their learning as well as

the group's progress.
4. Interdependence: Success depends on each team member’s contribution and the group’s

collective effort.
5. Interaction: Encourages dialogue, questioning, and feedback among peers.

Apriori Algorithm Using Collaborative Learning

Introduction to the Apriori Algorithm

The Apriori Algorithm is a fundamental data mining technique used to find frequent

itemsets in a dataset and derive association rules from them. It is widely used in

market basket analysis to identify relationships between items purchased together.

The algorithm operates by:

1. Generating candidate itemsets (sets of items) based on the dataset.
2. Pruning infrequent itemsets using a minimum support threshold.
3. Generating association rules with a confidence threshold to identify patterns.

Why Use Collaborative Learning for the Apriori Algorithm?

The Apriori Algorithm involves multiple steps of data filtering, calculation, and

logical reasoning. Using collaborative learning can help students better understand

the complex steps of the algorithm by engaging them in group-based problem-solving

activities.

Benefits of Collaborative Learning for Apriori Algorithm:

 Encourages peer-to-peer learning for complex concepts.

 Helps in breaking down tasks into manageable parts.

 Fosters critical thinking and problem-solving.

 Enhances understanding through group discussions and interactive learning.

Collaborative Learning Activity for Apriori Algorithm

Here’s a step-by-step guide to implementing a collaborative learning activity to teach

the Apriori Algorithm:

Step 1: Form Groups

Divide students into small groups of 4-5 members, ensuring a mix of skills within

each group.

Roles in the Group:

 Leader: Keeps the group on task and ensures participation.

 Data Analyst: Handles data input and calculations.

 Recorder: Takes notes on the group’s findings.

 Presenter: Shares the group's results with the class.

 Checker: Verifies the accuracy of calculations.

Step 2: Explain the Apriori Algorithm

Provide a brief introduction to the algorithm, including the key concepts of:

 Frequent Itemsets

 Support, Confidence, and Lift

 Association Rules

Use a real-world example to make it relatable. For instance:

 A supermarket wants to find which products are frequently bought together.

Transaction ID Items Purchased

1 Bread, Milk

2 Bread, Diaper, Beer

3 Milk, Diaper, Beer

4 Bread, Milk, Diaper

Step 3: Group Task – Applying the

Apriori Algorithm

Provide a transaction dataset such as:

Activity Steps:

1. Step 1: Calculate Support for Itemsets
Each group calculates the support for individual items and item combinations.

2. Step 2: Generate Frequent Itemsets
Groups apply the minimum support threshold to filter

out in frequent item sets.

3. Step 3: Generate Association Rules

Groups calculate confidence for potential association rules and determine

which rules are strong enough to keep.

Step 4: Group Discussion and Presentation

After completing the task, each group:

 Presents their findings to the class.

 Explains the process they followed.

 Shares any challenges they faced and how they solved them.

Step 5: Reflective Learning

After presentations:

 Encourage students to reflect on what they learned from their peers.

 Discuss real-world applications of the Apriori Algorithm, such as:
o Market Basket Analysis
o Fraud Detection
o Recommendation Systems

Assessment of Learning

To assess the effectiveness of the activity:

1. Group Report: Each group submits a report on their process and findings.
2. Individual Reflection: Each student writes a reflection on what they learned and how

collaborative learning helped them.
3. Quiz: Conduct a quiz to test individual understanding of the Apriori Algorithm.

Challenges and Solutions
Challenge Solution

Unequal participation Assign roles and rotate them regularly.

Complexity of the algorithm Break down the algorithm into smaller steps.

Difficulty in calculations Provide guided examples and templates.

5 Bread, Milk, Beer

Conclusion

Using collaborative learning to teach the Apriori Algorithm enhances students'

understanding of complex data mining concepts through teamwork and peer

interaction. It fosters critical thinking, encourages knowledge sharing, and prepares

students for real-world problem-solving scenarios in data analysis and machine

learning.

Faculty

Academic Year: 2023-2024

Department of Information Technology

Compiler Design
Faculty Name: B. Deepthi Reddy

Teaching Learning Methodology: Interactive Based Learning

Topic Name: Syntax-Directed translation

Syntax-directed translation (SDT) is a technique used in compiler design to perform

translation (e.g., converting source code into intermediate or target code) based on the

structure of the syntax tree, which represents the syntactic structure of the source

language. In this approach, each production rule in the grammar is associated with

translation actions that are carried out as the grammar is parsed.

Key Concepts of Syntax-Directed Translation:

1. Syntax Tree: The tree structure that represents the syntactic structure of the

source code according to its grammar. Each node in the tree corresponds to a

non-terminal or terminal in the grammar.

2. Translation Actions: These are semantic actions (such as generating

intermediate code, performing type checking, etc.) that are associated with

grammar rules.

3. Attributed Grammar: A grammar with semantic rules attached to its non-

terminal symbols. The attributes can hold information about types, values, or

other features of the language constructs.

SDT Process:

 Syntactic Analysis: During parsing, the syntax of the input is checked, and a

syntax tree is constructed.

 Translation: As the syntax tree is constructed, semantic actions associated

with each grammar rule are executed to generate intermediate code or to

process the input data further.

Technology for SDT in Compiler Design:

1. Interactive Compilation and Debugging:

o Interactive Feedback: By integrating SDT with interactive tools,

developers can receive immediate feedback about translation issues as

they write code. Advanced IDEs can use real-time syntax-directed

translation to guide the developer, showing suggestions or warnings

about possible errors.

o Live Debugging: Advanced debugging tools can use SDT to offer live

insights into the syntax and semantics of the code, allowing developers

to see how the program is being translated step by step.

Example of SDT in Action:

Suppose we have a simple expression grammar like this:

Copy code

E -> E + T | T

T -> T * F | F

F -> (E) | id

In a syntax-directed translation scheme, we can associate the following translation

actions:

 For E -> E + T:

o E.val = E1.val + T.val

 For T -> T * F:

o T.val = T1.val * F.val

 For F -> id:

o F.val = id.val

As the parser constructs the syntax tree for an expression like id + id * id, the

translation actions are executed to compute the corresponding intermediate code or

semantic information.

Conclusion:

Syntax-directed translation is fundamental to compiler design, and the integration of

innovative technologies like AI, machine learning, and parallel processing holds great

promise for enhancing the efficiency, scalability, and flexibility of compilers. These

technologies can also provide more interactive and user-friendly experiences for

developers, improving both the speed and accuracy of code

translation.

Faculty

Academic Year: 2023-2024

DEPARTMENT OF INFORMATION TECHNOLOGY

Design and Analysis of Algorithms

Faculty Name: K. Shireesha

Teaching Learning Methodology: Case Study based Approach

Topic Name: Types of Algorithms

Case Study based Approach:
A case study-based approach is a highly effective way to teach and understand the different types of

algorithms in the context of Design and Analysis of Algorithms. Below is an outline for exploring

algorithm types through case studies, complete with real-world problems to provide context and clarity.

1. Divide and Conquer Algorithms

Key Concept:
Break a problem into smaller sub-problems, solve them recursively, and then combine their results.

Case Study:

Problem: Merge Sort

 Scenario: A company needs to sort millions of customer records efficiently.

 Solution: Demonstrate how Merge Sort divides the array into halves, recursively sorts them,

and merges them in sorted order. Analyze time complexity O(nlogn)O(n \log n)O(nlogn).

2. Dynamic Programming (DP)

Key Concept:

Solve problems by breaking them into overlapping sub-problems and using a table to store results to

avoid redundant computation.

Case Study:

Problem: Shortest Path in a Grid

 Scenario: A delivery robot in a warehouse needs to find the shortest path from one corner to

another, avoiding obstacles.

 Solution: Use DP to calculate the minimum path sum at each cell based on the previous row

and column cells. Discuss time complexity O(m×n)O(m \times n)O(m×n).

3. Greedy Algorithms

Key Concept:

Make the locally optimal choice at each step with the hope that these choices lead to the globally

optimal solution.

Case Study:

Problem: Huffman Encoding

 Scenario: A text compression algorithm is needed to reduce storage costs.

 Solution: Use Huffman's algorithm to construct a tree with minimal encoding length based on

character frequencies. Explain why it is optimal and analyze O(nlogn)O(n \log n)O(nlogn).

4. Backtracking

Key Concept:

Use recursive trial-and-error to solve constraint satisfaction problems, abandoning paths that fail

constraints.

Case Study:

Problem: N-Queens Problem

 Scenario: Place nnn queens on an n×nn \times nn×n chessboard so that no two queens

threaten each other.

 Solution: Discuss how backtracking is used to place queens row by row, backtracking when

conflicts arise. Highlight time complexity in worst-case O(n!)O(n!)O(n!).

5. Divide and Conquer vs. Dynamic Programming

Case Study:

Problem: Matrix Chain Multiplication

 Scenario: A graphics rendering engine needs to compute optimal order of matrix

multiplications to minimize operations.

 Solution: Contrast a naive divide-and-conquer approach with a DP solution that uses a table

to track minimum costs. Analyze O(n3)O(n^3)O(n3).

6. Graph Algorithms

Key Concept:

Algorithms designed to solve problems in graph structures like paths, cycles, connectivity, etc.

Case Study:

Problem: Dijkstra's Algorithm

 Scenario: A GPS application needs to find the shortest driving route between two points in a

city.

 Solution: Explain how Dijkstra's algorithm calculates the shortest path in a weighted graph.

Analyze O((V+E)logV)O((V + E) \log V)O((V+E)logV) using a priority queue.

7. Brute Force Algorithms

Key Concept:

Directly try all possible solutions and select the best.

Case Study:

Problem: Traveling Salesperson Problem (TSP)

 Scenario: A salesperson needs to visit nnn cities and return to the starting point with the

shortest route.

 Solution: Demonstrate the brute-force approach that computes all possible permutations and

selects the optimal. Discuss exponential complexity O(n!)O(n!)O(n!).

8. Approximation Algorithms

Key Concept:

Provide near-optimal solutions within a guaranteed error bound.

Case Study:

Problem: Vertex Cover Problem

 Scenario: Cover all edges in a network with the minimum number of nodes.

 Solution: Use a greedy 2-approximation algorithm and compare it with the exact solution.

Analyze O(V+E)O(V + E)O(V+E).

9. Randomized Algorithms

Key Concept:

Use randomness as part of the logic to simplify or speed up the algorithm.

Case Study:

Problem: QuickSort

 Scenario: A sorting algorithm is needed with good average-case performance for an online

bookstore.

 Solution: Explain how random pivot selection ensures O(nlogn)O(n \log n)O(nlogn)

average-case performance.

10. String Matching Algorithms

Key Concept:
Efficiently search for a pattern in a given text.

Case Study:

Problem: Knuth-Morris-Pratt (KMP) Algorithm

 Scenario: Search for specific keywords in a large database of text files.

 Solution: Show how KMP uses preprocessing to achieve O(m+n)O(m + n)O(m+n)

complexity for matching.

Vidya Jyothi Institute of Technology

Academic Year: 2023-2024

 Department of Information Technology

 Mobile Application Development

Faculty Name: M. Udaya Kiran

Teaching Methodology: Competency based Learning

Topic Name: SQLite

Description about Mode:

Competency-based learning (CBL) is an educational approach that focuses on learners

mastering specific skills or competencies rather than progressing through a course

based on time spent in class. When applying competency-based learning to learning

SQLite, the idea is to break down the subject into smaller, measurable competencies

and ensure learners have mastered each before moving on to the next level. Here’s

how to apply CBL to learning SQLite:

Topic Handled:

1. Competency Breakdown for SQLite Learning

To create a competency-based learning structure for SQLite, you would identify key

competencies, which can be grouped into beginner, intermediate, and advanced levels.

Here’s a possible breakdown:

Beginner Competencies:

 Basic Database Concepts:
o Understand what a database is and the role of SQLite in modern applications.

o Understand tables, rows, and columns in a database.

 SQLite Basics:
o Install and configure SQLite.

o Open, create, and close a database.

o Basic SQL commands: CREATE TABLE, INSERT, SELECT, UPDATE, DELETE.

Intermediate Competencies:

 Complex Queries:
o Use WHERE clauses with logical operators.

o Use ORDER BY, GROUP BY, and HAVING to organize data.

o Aggregate functions like COUNT(), SUM(), AVG(), etc.

 Database Integrity and Constraints:
o Create and apply primary keys, foreign keys, unique constraints.

o Understand referential integrity and cascading actions (ON DELETE CASCADE,
ON UPDATE CASCADE).

 Joins and Subqueries:
o Perform inner, left, right, and full joins.

o Use subqueries in SELECT, INSERT, UPDATE, and DELETE statements.

Advanced Competencies:

 Performance Optimization:
o Understand indexing and how to create indexes for better performance.

o Understand query optimization techniques.

 Transactions and Concurrency Control:
o Work with transactions (BEGIN, COMMIT, ROLLBACK).

o Understand SQLite's concurrency model and how to handle locking.

 Database Design and Schema Management:
o Design and normalize database schemas (1NF, 2NF, 3NF).

o Implement schema changes (e.g., ALTER TABLE).

2. Assessing Competency Mastery

For each competency, learners can be assessed using practical exercises or quizzes

that require them to demonstrate their understanding and ability to apply the skills.

Assessments might include:

 Practical Exercises: Hands-on coding tasks where learners create, modify, and query

databases in SQLite.

 Quizzes/Tests: Multiple-choice or short-answer questions to check theoretical understanding.

 Project-Based Assessments: A project where learners build a functional SQLite-based

application.

3. Progression Based on Mastery

In a competency-based learning environment, learners only move on to more

advanced topics after demonstrating mastery of the required skills in previous

competencies. For example:

 A learner must be able to perform basic queries and understand table creation before moving

on to complex joins.

 Once they demonstrate proficiency with subqueries and joins, they can proceed to working

with indexes and optimizing query performance.

4. Learning Materials and Resources

Learners should have access to a variety of resources to help them master each

competency, such as:

 Text-Based Tutorials: Articles, textbooks, or online tutorials that break down each skill step

by step.

 Interactive Platforms: Websites like Codecademy, W3Schools, or SQLite's official

documentation with interactive SQL exercises.

 Hands-on Practice: Learners should be encouraged to practice by solving real-world

problems or building small SQLite-based applications.

5. Mastery-Based Progression

After completing the assessments for each competency, learners are encouraged to

reflect on their progress. For example, if they’ve mastered working with simple

queries but still struggle with complex joins, they should focus on further practice and

mastery before moving forward.

Example of Competency-Based Learning Path for SQLite:

1. Competency 1: Install SQLite and create a database.
o Assessment: Create a new SQLite database and table.

2. Competency 2: Basic data manipulation (INSERT, SELECT).
o Assessment: Add records to a table and retrieve specific data with simple SELECT

queries.

3. Competency 3: Filter and sort data using WHERE, ORDER BY, GROUP BY.
o Assessment: Write queries to filter data and sort the results based on certain criteria.

4. Competency 4: Use joins to combine data from multiple tables.
o Assessment: Write queries that use different types of joins (inner, left, etc.).

5. Competency 5: Implement constraints like primary and foreign keys.
o Assessment: Create a database schema that includes integrity constraints.

6. Competency 6: Optimize queries using indexes.
o Assessment: Create indexes on frequently queried columns and compare

performance before and after optimization.

Conclusion

Competency-based learning for SQLite allows learners to focus on mastering specific

skills in a structured way. By progressing through a series of competencies, learners

can gain a deeper understanding of SQLite, while ensuring they build a solid

foundation before tackling more complex topics. This approach can help learners

develop practical, real-world database skills that they can apply in various

development contexts.

Academic Year: 2023-2024

DEPARTMENT OF INFORMATION TECHNOLOGY

Object Oriented Analysis and Design

Faculty Name: S.Divya

Teaching Learning Methodology: Design Thinking

Topic Name: Deployment Models

Design Thinking is a user-centric, iterative approach to problem-solving that focuses

on understanding the user's needs, redefining problems, and creating innovative

solutions. When applied to deployment models, Design Thinking can help ensure

that the model chosen meets the user's requirements, is scalable, and is easy to

manage and maintain.

Applying Design Thinking to Deployment Models

When deploying a software application or service, there are several deployment

models available, such as cloud-based, on-premise, hybrid, and edge computing.

By applying Design Thinking, we can carefully evaluate the needs of the users and

stakeholders and choose the most appropriate deployment model.

Let’s break it down step by step using Design Thinking:

1. Empathize: Understand the User’s Needs

Before deciding on a deployment model, it’s essential to empathize with the users

(internal stakeholders, clients, IT staff, end-users). Understanding their needs helps

you make decisions about scalability, flexibility, cost, performance, and security.

2. Define: Clearly Articulate the Problem

Based on the insights from the Empathize phase, you need to define the problem

clearly. This could be a challenge like “The application must be scalable, secure, and

accessible to remote users,” or “The client needs to reduce IT overhead while

maintaining full control over the infrastructure.”

3. Ideate: Generate Possible Deployment Models

Once you understand the users’ needs, the next step is to generate multiple possible

solutions. In the context of deployment, the goal is to consider several deployment

models based on the problem defined.

Here are some common deployment models you can ideate upon:

On-Premise Deployment:

 Use Case: Ideal for organizations that require complete control over their

infrastructure and security. This model works well for applications that need to

remain within a specific internal network, often due to strict regulatory or

compliance requirements.

 Example: A healthcare provider needing to store patient data locally to

comply with HIPAA regulations.

Cloud Deployment (Public Cloud):

 Use Case: Best suited for organizations that need to scale quickly and want to

minimize infrastructure management. The public cloud model is flexible, cost-

effective, and widely used for applications with unpredictable workloads.

 Example: A startup looking to deploy a web app with global reach, using

AWS, Azure, or Google Cloud.

Private Cloud Deployment:

 Use Case: A hybrid model between on-premise and public cloud, the private

cloud provides the benefits of cloud computing while maintaining control over

the infrastructure. Suitable for organizations that need scalability but also have

strict privacy or regulatory concerns.

 Example: A financial institution with sensitive data that requires both

scalability and control.

Hybrid Cloud Deployment:

 Use Case: Combines on-premise and public cloud environments. Useful for

organizations that need to keep some workloads on-premise (e.g., legacy

systems) while leveraging the cloud for others (e.g., customer-facing services).

 Example: A retail company that keeps internal databases on-premise but uses

cloud services for e-commerce.

Edge Computing:

 Use Case: Edge computing is ideal for applications requiring low latency,

such as IoT, real-time analytics, or machine learning processing close to the

source of data.

 Example: Autonomous vehicles requiring real-time data processing for

navigation or industrial machines with sensors for predictive maintenance.

4. Prototype: Build Simple Versions of the Solution

Prototyping in this case doesn’t necessarily mean building a full-fledged infrastructure

but rather testing and experimenting with different deployment models on a small

scale.

Steps for Prototyping Deployment Models:

 Deploy a test version of the application: Use a cloud provider to quickly

deploy a small, low-cost version of the application, or deploy it on-premise for

a small team to test the internal model.

 Conduct small-scale simulations: Test how the application performs in

various models (e.g., load times, security, resource consumption).

 Evaluate deployment flexibility: Assess whether the deployment model

offers enough flexibility to scale as the business grows or if it introduces too

many bottlenecks.

5. Test: Evaluate the Prototypes

Once you’ve built prototypes of various deployment models, you can test them

against the goals and requirements that were defined earlier. This is a critical phase

where feedback is gathered from users, stakeholders, and system administrators.

Testing Criteria:

 Performance: How well does the application perform in different deployment

models? Consider factors like latency, speed, and load balancing.

 Scalability: Can the deployment model scale to meet future demand? Does it

allow for flexible expansion?

 Cost-Effectiveness: Compare the cost of deploying in the cloud versus on-

premise, considering both short-term and long-term expenses.

 Security: Does the deployment model meet security and compliance

requirements (e.g., data encryption, access control)?

 Usability: How easy is it to manage and maintain the deployment model?

Does it support continuous updates and monitoring?

Final Decision:

Based on the insights gathered during testing, you can make an informed decision on

the most suitable deployment model for your project or organization.

Example Deployment Model Selection Using Design Thinking:

Scenario: A fintech company needs to deploy a new mobile banking application.

 Empathize: The application must meet high-security standards (e.g.,

encryption, compliance with financial regulations) while being easily

accessible and scalable for users worldwide.

 Define: The app needs to be highly available, secure, and scalable. It must also

provide seamless updates without downtime.

 Ideate: Explore deployment options such as private cloud, hybrid cloud, or

edge computing.

 Prototype: Deploy a small-scale version of the app on AWS to test scalability

and security features. Simultaneously, deploy on-premise infrastructure for

internal operations to check for control and compliance.

 Test: After testing, evaluate which model provides the best performance,

security, and cost-effectiveness. You may find that a Hybrid Cloud model

works best, allowing you to store sensitive data on-premise while leveraging

the cloud for customer-facing services and scalability.

Conclusion:

Using Design Thinking for choosing a deployment model involves:

 Empathizing with stakeholders to understand their needs and constraints.

 Defining the requirements based on those needs.

 Ideating multiple solutions and testing them on a small scale.

 Finally, refining and selecting the best deployment model that meets both user

expectations and business requirements.

By applying this human-centered approach, you ensure that the chosen deployment

model aligns perfectly with the real-world needs of the users and the business.

Faculty

Academic Year: 2023-2024

 Department of Information Technology

Java Programming

Faculty Name: M.Keerthi

Teaching Learning Methodology: Problem-Based Learning (PBL)

Topic: Developing a Basic Student Grading System Using Inheritance

Problem Statement: Design a Java application to calculate and display the grades of

students by utilizing inheritance. Each student has a name, marks in multiple subjects,

and a grade based on their performance. The application must include a base class for

common properties and a derived class for student-specific operations.

Learning Objectives

 Understand and implement inheritance in Java.

 Use control structures and arrays effectively.

 Enhance code reusability and modularity by using object-oriented principles.

 Develop simple yet functional Java applications for real-world scenarios.

Teaching Strategy

1. Problem Exploration

 Contextual Introduction:

o Introduce the need for grading systems in educational institutions.

o Discuss what attributes a grading system should have (e.g., student

name, marks, grade).

o Introduce inheritance as a way to handle shared attributes efficiently.

 Discussion:
o How does inheritance simplify code?

o What are the benefits of using a base class and a derived class?

2. Core Concepts Review

 Java Basics: Classes, methods, arrays.

 Inheritance: Base class (Person) and derived class (Student).

 Encapsulation: Using methods to calculate and display grades.

Step-by-Step Activity

1. Class Design

 Base Class: Person

1. Attribute: name

2. Methods: Constructor, getName()

 Derived Class: Student

1. Attributes: marks[], total, grade

2. Methods: calculateTotal(), assignGrade(), displayReport()

2. Implementation Activity

 Provide a starter code scaffold (below).

 Student Task:

1. Complete the methods in the Student class.

2. Add input handling to take student data.

3. Extend functionality to handle multiple students (optional).

3. Starter Code

// Base class for Person

class Person {

 String name;

 public Person(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

// Derived class for Student

class Student extends Person {

 int[] marks;

 int total;

 char grade;

 public Student(String name, int[] marks) {

 super(name); // Call the constructor of the base class

 this.marks = marks;

 }

 public void calculateTotal() {

 total = 0;

 for (int mark : marks) {

 total += mark;

 } }

 public void assignGrade() {

 double average = total / (double) marks.length;

 if (average >= 85) {

 grade = 'A';

 } else if (average >= 70) {

 grade = 'B';

 } else if (average >= 50) {

 grade = 'C';

 } else {

 grade = 'F';

 }

 }

 public void displayReport() {

 System.out.println("\nStudent Report:");

 System.out.println("Name: " + getName());

 System.out.println("Total Marks: " + total);

 System.out.println("Grade: " + grade);

 }}

// Main class to demonstrate the program

public class GradingSystem {

 public static void main(String[] args) {

 // Sample data: One student for simplicity

 int[] marks = {85, 90, 78};

 Student student = new Student("Alice", marks);

 student.calculateTotal();

 student.assignGrade();

 student.displayReport();

 }}

4. Extensions

 Add a method to handle multiple students using an array or ArrayList.

 Include file handling to save and load student data.

 Implement exception handling for invalid inputs.

Assessment and Reflection

Formative Assessment:

 Observe students' ability to implement inheritance effectively.

 Conduct a quick quiz on OOP concepts post-activity.

Summative Assessment:

 Ask students to extend the project by adding features like calculating class

averages.

 Evaluate their code structure, logic, and readability.

Collaborative Learning Activities

 Group Discussion: How can inheritance make large-scale applications more

manageable?

 Pair Programming: Work in pairs to implement methods and test the

application.

 Code Reviews: Peer-review each other's code for errors and suggestions.

Conclusion

This problem-based activity introduces students to real-world applications of

inheritance in Java. By building a simple grading system, students reinforce core OOP

principles, learn to modularize code, and develop debugging skills. This hands-on

experience prepares them for tackling larger software development projects in the

future.

Faculty

	Academic Year: 2023-2024
	DEPARTMENT OF INFORMATION TECHNOLOGY
	Cloud Computing
	Teaching Learning Methodology: Competency Based Learning
	Public Cloud Model
	2. Private Cloud Model
	3. Hybrid Cloud Model
	4. Community Cloud Model

	Examples Competencies for Cloud Deployment Models:
	Conclusion:
	Academic Year: 2023-2024 (1)
	Department of Information Technology
	Programming for Problem Solving
	Faculty Name: D.Anil
	Teaching Methodology: Demonstration based learning
	Topic name: Loops in C
	Demonstrative Learning of Loops in C
	1. For Loop
	Syntax:
	Example: Printing numbers from 1 to 5
	Explanation:

	2. While Loop
	Syntax:
	Example: Printing numbers from 1 to 5
	Explanation:

	3. Do-While Loop
	Syntax:
	Example: Printing numbers from 1 to 5
	Explanation:

	Summary of Loops:
	Introduction to Collaborative Learning
	Key Features of Collaborative Learning
	Apriori Algorithm Using Collaborative Learning
	Introduction to the Apriori Algorithm
	Why Use Collaborative Learning for the Apriori Algorithm?
	Collaborative Learning Activity for Apriori Algorithm
	Step 1: Form Groups
	Step 2: Explain the Apriori Algorithm
	Step 3: Group Task – Applying the Apriori Algorithm
	Activity Steps:

	Step 4: Group Discussion and Presentation
	Step 5: Reflective Learning

	Assessment of Learning
	Challenges and Solutions
	Conclusion
	Key Concepts of Syntax-Directed Translation:
	SDT Process:
	Technology for SDT in Compiler Design:
	Example of SDT in Action:
	Conclusion:
	1. Competency Breakdown for SQLite Learning
	Beginner Competencies:
	Intermediate Competencies:
	Advanced Competencies:

	2. Assessing Competency Mastery
	3. Progression Based on Mastery
	4. Learning Materials and Resources
	5. Mastery-Based Progression
	Example of Competency-Based Learning Path for SQLite:
	Conclusion
	Academic Year: 2023-2024
	DEPARTMENT OF INFORMATION TECHNOLOGY
	Object Oriented Analysis and Design
	Teaching Learning Methodology: Design Thinking
	Applying Design Thinking to Deployment Models
	1. Empathize: Understand the User’s Needs
	2. Define: Clearly Articulate the Problem
	3. Ideate: Generate Possible Deployment Models
	Cloud Deployment (Public Cloud):
	Private Cloud Deployment:
	Hybrid Cloud Deployment:
	Edge Computing:

	4. Prototype: Build Simple Versions of the Solution
	Steps for Prototyping Deployment Models:

	5. Test: Evaluate the Prototypes
	Testing Criteria:

	Final Decision:
	Example Deployment Model Selection Using Design Thinking:
	Conclusion: (1)
	Academic Year: 2023-2024 (1)
	Department of Information Technology
	Java Programming
	Faculty Name: M.Keerthi
	Teaching Learning Methodology: Problem-Based Learning (PBL)

	Topic: Developing a Basic Student Grading System Using Inheritance
	Learning Objectives
	Teaching Strategy
	1. Problem Exploration
	2. Core Concepts Review

	Step-by-Step Activity
	1. Class Design
	2. Implementation Activity
	3. Starter Code
	// Base class for Person
	class Person {
	String name;
	public Person(String name) {
	this.name = name;
	}
	public String getName() {
	return name;
	} (1)
	} (2)
	// Derived class for Student
	class Student extends Person {
	int[] marks;
	int total;
	char grade;
	public Student(String name, int[] marks) {
	super(name); // Call the constructor of the base class
	this.marks = marks;
	} (3)
	public void calculateTotal() {
	total = 0;
	for (int mark : marks) {
	total += mark;
	} }
	public void assignGrade() {
	double average = total / (double) marks.length;
	if (average >= 85) {
	grade = 'A';
	} else if (average >= 70) {
	grade = 'B';
	} else if (average >= 50) {
	grade = 'C';
	} else {
	grade = 'F';
	} (4)
	} (5)
	public void displayReport() {
	System.out.println("\nStudent Report:");
	System.out.println("Name: " + getName());
	System.out.println("Total Marks: " + total);
	System.out.println("Grade: " + grade);
	}}
	// Main class to demonstrate the program
	public class GradingSystem {
	public static void main(String[] args) {
	// Sample data: One student for simplicity
	int[] marks = {85, 90, 78};
	Student student = new Student("Alice", marks);
	student.calculateTotal();
	student.assignGrade();
	student.displayReport();
	}} (1)
	4. Extensions

	Assessment and Reflection
	Formative Assessment:
	Summative Assessment:

	Collaborative Learning Activities
	Conclusion (1)

