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Title of Innovative method/activity : Simulation based teaching and learning

Name of the faculty : Dr. C. N. Ravi

Designation : Professor

Course Name : Computer Methods Power Systems

Objectives of method: Simulation is used to observe the load flow in graphical and numerical,
to assess the performance of an existing system or predict the performance of a planned system,
comparing alternative solutions and designs.

Topic Covered through activity: Load flow solution using Gauss Seidel method

Description of method: Power Flow studies, commonly known as load flow is important part of
power system analysis. They are necessary for planning, economic scheduling, and control of an
existing system as well a planning its future expansion. The problem consists of determining the
magnitudes and phase angle of voltages at each bus and active and reactive power flow in each
line. In solving a power flow problem, the system is assumed to be operating under balanced
conditions and single phase model is used. Four quantities are associated with each bus. These
are voltage magnitude |V| , phase angle δ , real power P and reactive power Q. The system buses
are generally classified into three types

Slack Bus (Swing Bus): is taken as reference bus where the magnitude and phase angle of the
voltages are specified.

Load Bus (PQ Bus): at this bus active and reactive powers are specified. The magnitude and
phase angles of the bus voltages are to be determined.

Generator Bus (PV Bus): They are also known as voltage controlled bus. At these buses, real
power and voltage magnitude are specified. The limits on the values of the reactive power are
also specified. The phase angles of the voltages and reactive power are to be determined.

Gauss Seidel (GS) method is standard method to find the power flow in the power system.
For solution of GS method the following equations are solved iteratively.



Voltage equation,

Real and reactive power are calculated using the following equations,

Current flow in the transmission line is, Iij = yij ( Vi – Vj )

Complex power flow in the line is, Sij= Vi I*ij

Power Loss, SLij = Sij - Sji

Simulation software: “PowerWorld” Simulator is freeware software. This simulator is an
interactive power system simulation package designed to simulate high voltage power system
operation.

A three bus test case is simulation using the Gauss Seidel method and the power flows are given
in the figure 1. The power flow is satisfies all the constraints and all meters are shown in blue
colour.

Figure 1: Power flow for the load is 280 MW in bus-2.

Figure 2 shows the power flow for the load increased to 380 MW in bus-2. Now the transmission
line connected to bus 1 and bus-2 is reached its 95% loading capacity and the meters are shown
in orange colour. This indicates the power flow is reached its near maximum limit in the
particular transmission line and needs an attention.



Figure 2: Power flow for the load is 380 MW in bus-2.

In figure 3 the transmission line reached its maximum limit and colour is changed to red. This
red colour alerts and need attention either to trip or load shedding.

Figure 3: Power flow for the load is 390 MW in bus-2

Outcome: Students are able to understand the practical aspects and need of power flow study.
Types of buses, electrical parameters (|V| , δ , P and Q) associated with each bus are understand
by the them. Effect of change in load or generation in the power system is visualized and
interpreted by the students.

For review contact: ravicn@vjit.ac.in



















Unit – I 

Syllabus 

UNIT I: POWER SYSTEM NETWORK MATRICES 

Graph Theory: Definitions, Bus Incidence Matrix, Y-bus formation by Singular Transformation Methods and Direct Inspection methods, 
Numerical Problems. 
FORMATION OF Z-BUS: Partial network, Algorithm for the Modification of Z-bus Matrix for addition element for the following cases: Addition of 
element from a new bus to reference, Addition of element from a new bus to an old bus, Addition of element between  an old bus to reference 
and Addition of element between two old busses (Numerical Problems). Modification of Z-bus for the changes in network (Problems). 

 

Graph Theory 

A graph is a mathematical structure consisting of a set of points called VERTICES or 
NODES and a set of LINES or BRANCH linking some pair of vertices. If the direction of 
the branch is given then it is said to be oriented graph. For finding network matrices in 
power system oriented graphs are required. 

Network (power system) components are replaced by single line called elements and their 
terminals are called nodes, which describe the geometrical structure. A graph is the 
geometrical interconnection of the elements of a power system. A sub graph is any 
subset of elements of the graph.  

Tree 

A connected sub-graph containing all nodes of a graph but no closed path is called tree. 
The elements of a tree are called branches. Number of branches in a tree is b. 

b=n – 1   where, n is the number of nodes in the graph 

Co-Tree 

The complement of the tree of a graph is called Co-Tree. The elements of the connected 
graph that are not included in the tree are called links and form the Co-Tree. The 
number of link is l. 

l = e – b  where, e is number of elements in the graph 

Basic loop 

If a link is added to the tree, a loop will be formed. The loop which has only one link is 
called basic loop 

Cut-Set 

A cut-set is a set of elements that, if removed, divides a connected graph into two 
connected sub-graphs. Independent cut-sets are called basic cut-sets. The number of 
basic cut-sets is equal to number of branches. 

Consider the power system shown below, which consists of 3 generators, 3 transmission 
lines and one transformer. For this connected line diagram and a graph is given in the 
figure (b) and (c) respectively. 
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T2: Page-28 



 

 

In the below diagram red colour lines are branches forms the Tree of the above power 
system. The green lines are links forms the Co-Tree. There are 4 branches and 3 links. 
Total 7 elements, 5 nodes. 

        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the below graph the element node incidence matrix is formulated, the number row of 
the matrix is equal to number of elements of the graph and number of column is equal 
to number of nodes in the graph. For the below graph number of row=7 and column=5. 
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The value of the matrix cell is 1 when the corresponding element in node is the starting 
point, -1 when the corresponding element in the node is end point. Bases on this the 
entries are shown in the below figure. 
 
In the incidence matrix, the reference node column ‘0’ is removed to get bus incidence 
matrix, which is denoted by ‘A’ and given below. 
 

 
 
 
 
For the same power system, the impedance values of the elements are given in the below 
table, Find the admittance matrix? 

S.N. Elements From-To buses Impedance  
1 e1 (G1) 0-1 j0.6 
2 e2 (G2) 0-2 j0.5 
3 e3 (G3) 0-4 j0.5 
4 e4 (TL1) 4-3 j0.2 
5 e5 (TL2) 2-3 j0.3 
6 e6 (TFR) 1-2 j0.1 
7 e7 (TL3) 2-4 j0.4 

 
For this table, Incidence Matrix (Â) is formulated and given below, 
 
[Y]bus=[A]T[y][A] 

T2: Page-31 

T2: Page-44 



 
row = Num. of element = 7 
column = Num. of node/bus = 5 
 
 

Â=





























7574737271
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AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA
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






































10100

00110

01100

11000

10001

00101

00011

 

 
The first column of the incidence matrix is corresponds to reference node ‘0’. and 
highlighted by red colour. Bus incidence matrix is derived by excluding the reference 
node ‘0’ and given below. 
 
Bus Incidence Matrix 
 
 































75747372

65646362

55545352

45444342

35343332

25242322

15141312

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

A =










































1010

0011

0110

1100

1000

0010

0001

A  

 
Primitive impedance matrix is the matrix which is square matrix has a size equal to 
number of elements of the graph. Impedance of each element forms the diagonal element 
of the primitive impedance matrix. Primitive means it is not connected and considered as 
an individual. Here the number of element is 7 and hence the matrix size is 7x7, whose 
values are given below. 

 
Primitive impedance matrix 

[z]=





























4.0000000

01.000000

003.00000

0002.0000

00005.000

000005.00

0000006.0

j

j

j

j

j

j

j

 

 

 0  1  2  3  4 

 0  1  2  3  4 

 1  2  3  4  1  2  3  4 



The inverse of the primitive impedance matrix is the primitive admittance matrix as 
given below and value of the matrix is as follows, 
 
Primitive admittance matrix, [y] =[z]-1 

[y]= 





























4.0/1000000

01.0/100000

003.0/10000

0002.0/1000
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j

j

j

j

j

j

j

 

 

[y]= 








































5.2000000

01000000

0033.30000

0005000

0000200

0000020

00000067.1

j

j

j

j

j

j
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Singular Transformation Method (Analytical Method) 

Singular transformation method is one method to find the admittance (Y) bus matrix. 
This is best method when the impedance of the elements has mutual coupling effect. The 
formula to find the Y-bus is given below, 
 
[Y]bus=[A]T[y][A] 
 
The values of bus incidence matrix and primitive admittance matrix are substituted below, 

[Y]bus =
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






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



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
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
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
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
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


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

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
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
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
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
































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01000000

0033.30000

0005000

0000200
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00000067.1
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j

j
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After the bus incidence matrix transpose the matrices becomes, 



[Y]bus =







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



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

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

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
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
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
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
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
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
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

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

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
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j

j

j

j

j
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First two matrix are reduced into one matrix by multiplying row of the fire matrix with the 
column of second matrix,

 
[Y]bus =
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
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
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
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
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


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
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
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
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
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Similarly, the resultant two matrix are multiplied and Y-bus is derived below.  

[Y]bus =

























5.955.20

533.833.30

5.233.333.1710

001067.11

jjj

jjj

jjjj
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This [Y]bus is the admittance matrix of the given power system. 
 
 
Find the admittance matrix of the power system given below 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

Bus Incidence Matrix, 
































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0011

1100
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0011

A  

 
 
Primitive - Self Impedance 

 

























2.00000

04.0000

005.000

0005.00

00006.0

z

j

j

j

j

j

 

 
First Mutual Impedance between element 1 and element 2 

 

























2.00000

04.0000

005.000

0005.01.0

0001.06.0

z

j

j

j
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jj

 

 
Second Mutual Impedance between element 1 and element 4 

 
























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04.0002.0

005.000

0005.01.0

02.001.06.0

z

j

jj

j

jj

jjj

 

 
 
Primitive admittance matrix  
[y] = [z]-1 
 

 1  2 

 3  4 

 (1) 

 (2) 



 















































2.00000

04.0002.0

005.000

0005.01.0

02.001.06.0

y

j

jj

j

jj

jjj

inv  

 
From this consider the sub-matrix 


















4.002.0

05.01.0

2.01.06.0

M  and find the inverse of this matrix 

Inverse of M =  M
M

Adjoint
1

 

 

***************** Steps to find Inverse of Matrix *************************
 

 
 

 

 
 

Inverse of A = A-1 =  A
A

Adj
1

 
 

 

******************************************************************** 



For the considered sub-matrix 


















4.002.0

05.01.0

2.01.06.0

M  

 
Determinate of M = |M| = 0.6x(0.5x0.4 – 0)-0.1x(0.1x0.4 – 0)+0.2x(0-0.2x0.5) 
 
|M| = 0.096 
 

Inverse of M =  M
M

Adjoint
1

 

 

M-1 = 





















02.3208.004.1

208.008.2417.0

04.1417.008.2

 

Update this sub-matrix first, second row and column into first, second row and column 
of the Primitive admittance matrix [y], and third row and column of sub-matrix into 
fourth row and column of the Primitive admittance matrix [y]. The third row and column 
of the [y] is zeros except the diagonal and hence the reciprocal of this element 1/0.5 is 
considered. The fifth row and column of the [y] is zeros except the diagonal and hence 
the reciprocal of this element 1/0.2 is considered. The substitute [y] matrix is given 
below, 
 
Primitive admittance matrix 

[y] = 




























2.0/10000

002.30208.004.1

005.0/100

0208.0008.2417.0

004.10417.008.2

 

 

After the reciprocal the final [y] is given below, 
 

[y] = 




























50000

002.30208.004.1

00200

0208.0008.2417.0

004.10417.008.2

 

 
Formula of Bus admittance matrix is given below, 
[Y]bus = [A]T[y][A] 
 
The values of bus incidence matrix [A] and primitive admittance [y] is substituted and 
given below, 




























































































1010

0011

1100

0101

0011

50000

002.30208.004.1

00200

0208.0008.2417.0

004.10417.008.2

1010

0011

1100

0101

0011

 [Y]

T

 


















































































1010

0011

1100

0101

0011

50000

002.30208.004.1

00200

0208.0008.2417.0

004.10417.008.2

10100

00110

11001

01011

 [Y]

 























































1010

0011

1100

0101

0011

50200

0208.0208.2417.0

598.10209.004.1

0188.20871.1623.0

 [Y]

 



























7250

208.4209.0871.1

5209.002.8811.2

0871.1811.2682.4

 [Y]

  
In the above matrix operator ‘j’ is not included for simplicity. Now it has to include and it 
will ‘-j’ for admittance and hence the final bus admittance matrix is 
 



























7250

208.4209.0871.1

5209.002.8811.2

0871.1811.2682.4

 [Y] j  

 
P3) Compute the bus admittance matrix for the power system shown below by using 
singular transformation method 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: 

G1 G2 

G3 

j0.4 

j0.2 j0.25 

j0.1 

j0.3 

j0.2 



 
S.N. Elements From-To buses Impedance  

1 e1 (G1) 0-1 j0.1 
2 e2 (G2) 0-2 j0.2 
3 e3 (G3) 0-3 j0.3 
4 e4 (TL1) 1-2 j0.4 
5 e5 (TL2) 2-3 j0.2 
6 e6 (TL3) 3-1 j0.25 

 
Bus Incidence Matrix, A (6 rows, 3 columns) 
 






































101

110

011

100

010

001

A  

 
Primitive impedance matrix, [z] (6 rows, 6 columns) 
 





























25.000000

02.00000

004.0000

0003.000

00002.00

000001.0

][ jz  

 
Primitive admittance matrix, [y]=[z]-1 
 





























25.0/100000

02.0/10000

004.0/1000

0003.0/100

00002.0/10

000001.0/1

][ jy  

 





























400000

050000

005.2000

00033.300

000050

0000010

][ jy  

In singular transformation method,  
[Y]bus = [A]T[y][A] 
 









































































































101

110

011

100

010

001

400000

050000

005.2000

00033.300

000050

0000010

101

110

011

100

010

001

][

T

bus jY  

 























































































101

110

011

100

010

001

400000

050000

005.2000

00033.300

000050

0000010

110100

011010

101001

][ jY bus  

 



























































101

110

011

100

010

001

45033.300

055.2050

405.20010

][ jY bus  

 
 
 






















33.1254

55.125.2

45.25.16

][ jY bus
 

 
 
 
P4) Form Ybus for the given network 

Element Positive sequence 
reactance 

1-2 0.2 
1-2 0.3 
1-3 0.5 
2-3 0.6 
2-4 0.3 
3-4 0.4 

 
 
Solution: 

Element 
Number 

Element Positive sequence 
reactance 

e1 1-2 0.2 
e2 1-2 0.3 
e3 1-3 0.5 



e4 2-3 0.6 
e5 2-4 0.3 
e6 3-4 0.4 

 
Bus Incidence Matrix, A (6 rows, 4 columns) 
 






































1100

1010

0110

0101

0011

0011

A  

 
Primitive impedance matrix, [z] (6 rows, 6 columns) 
 





























4.000000

03.00000

006.0000

0005.000

00003.00

000002.0

][ jz  

 
Primitive admittance matrix, [y]=[z]-1 
 





























4.0/100000

03.0/10000

006.0/1000

0005.0/100

00003.0/10

000002.0/1

][ jy  

 





























5.200000

033.30000

0067.1000

000200

000033.30

000005

][ jy  

 
In singular transformation method,  
[Y]bus = [A]T[y][A] 









































































































1100

1010

0110

0101

0011

0011

5.200000

033.30000

0067.1000

000200

000033.30

000005

1100

1010

0110

0101

0011

0011

][

T

bus jY  

 


























































































1100

1010

0110

0101

0011

0011

5.200000

033.30000

0067.1000

000200

000033.30

000005

110000

101100

011011

000111

][ jY bus  

 






























































1100

1010

0110

0101

0011

0011

5.233.30000

5.2067.1200

033.367.1033.35

000233.35

][ jY bus  

 



























83.55.233.30

5.217.667.12

33.367.133.1333.8

0233.833.10

][ jY bus

 
 

 

Derive the expression for bus admittance matrices by singular transformation 

method (bus admittance and impedance matrix)  
 

The bus admittance matrix Ybus can be derived from the bus incidence matrix – A. The 
performance equation of the primitive network 
 

  vyji   

 
The above equation is pre-multiplied by transpose of bus incidence matrix - At, then 
 

  vyAjAiA
ttt          (1) 

 

Since the matrix A shows the incidence of elements to buses, iA
t  is a vector in which 

each element is the algebraic sum of the current through the network elements 
terminating at a bus. In accordance with Kirchhoff’s law, the algebraic sum of the 
currents at a bus is zero. Then 
 

0iA
t         (2) 

T2: Page-43 



 

Similarly, jA
t  gives the algebraic sum of the source currents at each bus and equals the 

vector of impressed bus currents, therefore  
 

jAI
t

BUS          (3) 

 
Substituting equation (2) and (3) into equation (1), yields 

  vyAI
t

BUS         (4) 

Power into the network BUS
t

BUS EI )( * and the sum of the power in the primitive network is

vj
t)(

*

. The power in the primitive and interconnected networks must be equal. Hence  

vjEI
t

BUS
t

BUS )()(
**         (5) 

Taking the conjugate transpose of the equation (3) 

*** )()( AjI
tt

BUS   

Since A is a real matrix, A* = A 

and 

AjI
tt

BUS )()(
**        (6) 

 

Substituting equation (6) into equation (5) 

vjEAj
t

BUS
t )()(

**

  

 

Since this equation is valid for all values of j , it follows that 

vEA BUS         (7) 

Substituting equation (7) into equation (4), 

 

  BUS
t

BUS EAyAI        (8) 

 

Since the performance equation of the network is 

BUSBUSBUS EYI        (9) 

 

It follows from the equation (8) and (9), that 

 AyAY
t

BUS         (10) 

 

The bus impedance matrix can be obtained from 

  11 )(   AyAYZ
t

BUSBUS      (11) 



Impedance Matrix 

 

Zbus matrix size = Number of bus = 3 

Number of element = 5 

Number of steps = number of element = 5 

 

To add elements, Number of Types = 4 

1. Zb is added from a new bus to the reference bus (i.e. a new branch is added and 
the dimension of ZBUS goes up by one). This is type-I modification. 

2. Zb is added from a new bus to an old bus (i.e., a new branch is added and the 
dimension of ZBUS goes up by one). This is type-2 modification. 

3. Zb connects an old bus to the reference bus (i.e., a new loop is formed but the 
dimension of ZBUS does not change). This is type-3 modification. 

4. Zb connects two old buses (i.e., new loop is formed but the dimension of ZBUS does 
not change). This is type-4 modification. 

5. Zb connects two new buses (ZBUS remains unaffected in this case). This situation 
can be avoided by suitable numbering of buses and from now on wards will be 
ignored 

 

Find the Impedance bus for the given below power system network? 

 

Step-1: (element e1)  Type -1: branch impedance Zb connects New bus to reference bus 

e1 

e2 
e3 

e5 

e4 



 

]2.0[busZ  

 

Step-2: (element e2)Type-2: branch impedance Zb connects New bus to old bus 

 





















0.12.0

2.02.0

8.02.02.0

2.02.0
busZ  

 

 

Step-3: (element e3) Type-3: branch impedance Zb connects old bus to reference bus 

 





































4.10.12.0

0.10.12.0

2.02.02.0

4.00.10.12.0

0.10.12.0

2.02.02.0

busZ  

 

33

3113
1111

Z

ZZ
ZZ

new 
  

171.0
4.1

2.02.0
2.011 


new

Z  

057.0
4.1

0.12.0
2.0

33

3213
1212 







Z

ZZ
ZZ

new  

newnew
ZZ 1221   

286.0
4.1

0.10.1
0.1

33

3223
2222 







Z

ZZ
ZZ

new  

e1 

e2 

e3 













286.0057.0

057.0171.0
busZ  

Step-4: (element e4)  Type 2: branch impedance Zb connects New bus to old bus 

 





































686.0286.0057.0

286.0286.0057.0

057.0057.0171.0

4.0286.0286.0057.0

286.0286.0057.0

057.0057.0171.0

busZ  

 

Step-5: (element e5)  Type-4: branch impedance Zb connects Between two old buses  

 


























44057.0686.0057.0286.0171.0057.0

057.0686.0686.0286.0057.0

057.0286.0286.0286.0057.0

171.0057.0057.0057.0171.0

Z

Zbus  

143.1)057.02171.0686.0(4.0)2( 13113344  ZZZZZ b  

























143.1629.0229.0114.0

629.0686.0286.0057.0

229.0286.0286.0057.0

114.0057.0057.0171.0

busZ  

44

4114
1111

Z

ZZ
ZZ

new 
  

e4 

e5 



159.0
143.1

114.0114.0
171.011 


new

Z  

080.0
143.1

229.0114.0
057.0

44

4214
1212 







Z

ZZ
ZZ

new

 

119.0
143.1

629.0114.0
057.0

44

4314
1313 







Z

ZZ
ZZ

new  

newnew
ZZ 1221   

240.0
143.1

229.0229.0
286.0

44

4224
2222 







Z

ZZ
ZZ

new  

156.0
143.1

629.0229.0
286.0

44

4324
2323 







Z

ZZ
ZZ

new  

newnew
ZZ 1331   

newnew
ZZ 2332   

339.0
143.1

629.0629.0
686.0

44

4334
3333 







Z

ZZ
ZZ

new  


















339.0156.0119.0

156.0240.0080.0

119.0080.0159.0

jZbus

 

 

2) Obtain the Impedance bus for the following network 

 

Solution: 

Number of elements = 5  number of steps = 5 

Number of bus = 3  Zbus size is 3x3 

Elements are numbered as follows, 



 

Step 1: (element e1)  Type -1: branch impedance Zb connects New bus to reference bus 

 

]5.0[busZ  

Step-2: (element e2)Type-2: branch impedance Zb connects New bus to old bus 

 





















7.05.0

5.05.0

2.05.05.0

5.05.0
busZ  

 

Step-3: (element e3)Type-2: branch impedance Zb connects New bus to old bus 

 

e1 

e2 

e3 e4 e5 

e1 

Reference bus 

 

e2 

 

  
 

e3 

 

 
 







































7.05.05.0

5.07.05.0

5.05.05.0

2.05.05.05.0

5.07.05.0

5.05.05.0

busZ  

 

Step-4: (element e4)Type-4: branch impedance Zb connects Between two old buses 

 

 

















































4444 2.02.00

2.07.05.05.0

2.05.07.05.0

05.05.05.0

5.07.07.05.05.05.0

5.07.07.05.05.0

7.05.05.07.05.0

5.05.05.05.05.0

ZZ

Zbus

 

 

6.0)5.027.07.0(2.0)2( 32223344  ZZZZZ b
 
























6.02.02.00

2.07.05.05.0

2.05.07.05.0

05.05.05.0

busZ

 

Reduce the matrix size by one 

44

4114
1111

Z

ZZ
ZZ

new 


 

5.0
4.0

00
5.011 


new

Z  

5.0
4.0

00
5.0

44

4214
1212 







Z

ZZ
ZZ

new

 

5.005.0
44

4314
1313 




Z

ZZ
ZZ

new

 

 
























6.02.02.00

2.07.05.05.0

2.05.07.05.0

05.05.05.0

busZ

 

e4 

 



newnew
ZZ 1221   

633.0
6.0

2.02.0
7.0

44

4224
2222 







Z

ZZ
ZZ

new  

566.0
6.0

2.02.0
5.0

44

4324
2323 







Z

ZZ
ZZ

new  

newnew
ZZ 1331   

newnew
ZZ 2332   

633.0
4.0

2.02.0
7.0

44

4334
3333 







Z

ZZ
ZZ

new  


















633.0566.05.0

566.0633.05.0

5.05.05.0

busZ

 

 

Step-5: (element e5) Type-3: branch impedance Zb connects old bus to reference bus 

 























5.0633.0566.0633.05.0

566.0633.0566.05.0

633.0566.0633.05.0

5.05.05.05.0

busZ

 





















133.1566.0633.05.0

566.0633.0566.05.0

633.0566.0633.05.0

5.05.05.05.0

busZ

 

Reduce the matrix size by one 

44

4114
1111

Z

ZZ
ZZ

new 


 

279.0
133.1

5.05.0
5.011 


new

Z  

220.0
133.1

633.05.0
5.0

44

4214
1212 







Z

ZZ
ZZ

new

 

e5 



250.0
133.1

566.05.0
5.0

44

4314
1313 







Z

ZZ
ZZ

new

 

 





















133.1566.0633.05.0

566.0633.0566.05.0

633.0566.0633.05.0

5.05.05.05.0

busZ

 

newnew
ZZ 1221   

279.0
133.1

633.0633.0
633.0

44

4224
2222 







Z

ZZ
ZZ

new  

249.0
133.1

566.0633.0
566.0

44

4324
2323 







Z

ZZ
ZZ

new  

newnew
ZZ 1331   

newnew
ZZ 2332   

350.0
133.1

566.0566.0
633.0

44

4334
3333 







Z

ZZ
ZZ

new  


















350.0249.0250.0

249.0279.0220.0

250.0220.0279.0

jZbus

 

 

 



Unit – II 

Syllabus 

UNIT II: POWER FLOW STUDIES 

Necessity of Power Flow Studies – Data for Power Flow Studies – Derivation of Static load flow equations, classification of Buses and their 
relevance to Power Flow. LOAD FLOW SOLUTION USING GAUSS SEIDEL METHOD: Acceleration Factor, Load flow solution without and 
with P-V buses, Algorithm and Flowchart. Numerical Load flow Solution for Simple Power Systems (Max. 3 -Buses): Determination of Bus 
Voltages, Injected Active and Reactive Powers (Sample One Iteration only) and finding Line Flows/Losses for the given Bus Voltages. 
NEWTON RAPHSON METHOD IN RECTANGULAR AND POLAR CO-ORDINATES FORM: Load Flow Solution without and with PV Busses- 
Derivation of Jacobian Elements, Algorithm and Flowchart (Max. 3-Buses) 
DECOUPLED AND FAST DECOUPLED METHODS: Comparison of Different Methods – DC load Flow. 

 

What is the Necessity of Power Flow Studies? 

Power flow studies are necessary for planning, economical operation, scheduling and exchange 

of power between utilities. It is also required for stability analysis, contingency analysis and state 

estimation. 

The result of power flow studies gives the bus voltage magnitude and phase angle, real and 
reactive power injection at all the buses and line loss. 

1. Load flow study is the steady state analysis of power system network. 

2. Load flow study determines the operating state of the system for a given loading. 
3. Load flow solves a set of simultaneous non linear algebraic power equations for the two 

unknown variables (|V| and ∠δ ) at each node in a system. 
4. To solve non linear algebraic equations it is important to have fast, efficient and accurate 

numerical algorithms. 
5. The output of the load flow analysis is the voltage and phase angle, real and reactive 

power (both sides in each line), line losses and slack bus power 
 

Bus Classification 

A bus is node has incoming and outgoing feeders. It is associated with four parameters; they are 

Voltage magnitude |V|, phase angle δ, real power P and reactive power Q. 

Bus type 
Specified 
quantity 

To find 
quantity 

Slack bus |V|, δ P, Q 

Generator bus P, |V| Q, δ 

Load bus P, Q |V|, δ 

 

Basic steps for Power flow studies 

1) Find Ybus for the given power system 

2) Make initial estimate for voltage 

3) Find the equations for |V|, δ, P and Q 

4) Find the error mismatch and stop when the error value is within tolerance  

 

 

 

https://www.electrical4u.com/voltage-or-electric-potential-difference/


Bus loading equation 

 

 

 

 



 

 

Calculation of net Injected power 

 

 

 

  



 

 

Using Gauss Seidel method, determine the phasor values of the voltages at bus 2 and 3. 

Take base MVA=100. 

      

 

 

Step 1: 



 

 

 

 

Step 2: Y-Bus Formation 

 

 

 

 

 

 



 

 

Step 3: Voltage calculation 

 

 

 

2) Find the bus voltages at the end of first iteration using GS method. Take base 

MVA as 100. 

 

Step 1:  

PL2 = 256.6 MW / 100 MVA = 2.566 PU 

QL2 = 110.2 MVAR / 100 MVA = 1.102 PU 

1 2 

3 

0.02 + j 0.04 

0.01 + j 0.03 0.0125 + j 0.025 

138.6 MW 
45.2 Mvar 

|V| = 1.05 L0 

256.6 MW 
110.2 Mvar 



PL3 = 138.6 / 100 = 1.386 PU 

QL3 = 45.2 / 100 = 0.452 PU 

 

P2 = PG2 - PL2 = -2.566 PU 

Q2 = QG2 - QL2 = -1.102 PU 

P3 = PG3 - PL3 = -1.386 PU 

Q3 = QG3 – QL3 = -0.452 PU 

 

Step 2:  

Diagonal Elements 

Y11 = (1/(0.02+0.04i))+(1/(0.01+0.03i)) = 20-50i = 53.8516∟-68.2332 

Y22 = (1/(0.02+0.04i))+(1/(0.0125+0.025i)) = 26-52i = 58.1378∟-63.4671 

Y33 = (1/(0.01+0.03i))+(1/(0.0125+0.025i)) = 26-62i = 67.2309∟-67.2831 

 

Off – Diagonal Elements 

Y12 = -1/(0.02+0.04i) = -10+20i = 22.3607∟116.6242 

Y13 = -1/(0.01+0.03i) = -10+30i = 31.6228∟108.4899 

Y23 = -1/(0.0125+0.025i) = -16+32i = 35.7771∟116.6242 

 






















2831.672309.676242.1167771.354899.1086228.31

6242.1167771.354671.631378.586242.1163607.22

4899.1086228.316242.1163607.222332.688516.53

busY

 

Step 3: Finding bus voltages 

Zeroth iteration  

V1 = 1.05 ∟0 

V20 = 1 + j 0 = 1.0 ∟0   Assumed value 

V30 = 1 + j 0 = 1.0 ∟0   Assumed value 

 

First iteration 

V2
1
 = ? 












 0

323121*0
2

22

22

1
2

)(

1
VYVY

V

jQP

Y
V  







 




 )1(6242.116771.35)05.1(6242.1163607.22
0.1

j1.102 2.566-

4671.631378.58

11
2V

 

=0.9825-j0.031 = 0.983∟-1.808 












 1

232131*0
3

33

33

1
3

)(

1
VYVY

V

jQP

Y
V

 












 )1.808-0.983(6242.1167771.35)05.1(4899.1086228.31

)0.1(

0.452i+1.386-

2831.672309.67

11
3V

 

= 1.0 – j0.0353 = 1.0 ∟-2.022 

  



 

Gauss Seidel Method Flowchart 

 

 

 

  

If Load (PQ) bus 

No 

Start 

Read bus data and 
line data, tolerance ε 

Convert all the electrical quantity into per 
unit for the common base 

Compute Y-bus 

Assume flat voltage start |V| = 1.0, δ=0 for 
unknown voltage quantity 

Iteration count N=0 

Bus count B=0 

If Slack bus 

No 

No 

For PV bus, find Q

 

Find Voltage vector 

  

Increment bus count B=B+1 

If B > Bmax 

Yes 

Find error voltage between present and previous iteration 

If |errormax| < ε 

Find slack bus power, line losses 

End 

Increment iteration 
count N=N+1 

Yes 

Yes 

Yes 

No 



What is Acceleration Factor? 

An acceleration factor is a value that can be used to speed up the convergence and 

reduce the number of required alteration in a Gauss Seidel method of power flow 

analysis. It is denoted by α and the value is from 1.2 to 2.0.  

)( 11 k

i

k

i

k

idAccelerate

k

i VVVV     

 

 

How to handle Load flow solution without and with P-V buses? 

 

 

 

 

  



NEWTON RAPHSON (NR) METHOD  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NEWTON RAPHSON (NR) Method Flowchart 

 

Start 

Read bus data and 
line data, tolerance ε 

Convert all the electrical quantity into per 
unit for the common base 

Compute Y-bus 

Assume flat voltage start |V| = 1.0, δ=0 for 
unknown voltage quantity 

Iteration count N=0 

For load buses calculate ΔP, ΔQ 
For Generator bus calculate ΔP 

Calculate Jacobian sub matrix elements  
J1, J2, J3, and J4 

Solve the below equation to find Δδ, Δ|V| 






























 

Q

P

JJ

JJ

V

1

43

21


 

Calculate new δ= δ+ Δδ, |V|= |V|+ Δ|V| 
error = max(ΔP, ΔQ) 

No 
If |error| < ε 

Yes 

Find slack bus power, line losses and print the result 

End 

Increment iteration 
count N=N+1 



 

 

 

 



 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decoupled Method Flowchart 

 

 

 

 

Start 

Read bus data and 
line data, tolerance ε 

Convert all the electrical quantity into per 
unit for the common base 

Compute Y-bus 

Assume flat voltage start |V| = 1.0, δ=0 for 
unknown voltage quantity 

Iteration count N=0 

For load buses calculate ΔP, ΔQ 
For Generator bus calculate ΔP 

Calculate Jacobian sub matrix elements  
J1, and J4 

Solve the below equation to find Δδ, Δ|V| 

 

Calculate new δ= δ+ Δδ, |V|= |V|+ Δ|V| 
error = max(ΔP, ΔQ) 

Find slack bus power, line losses and print the result 

End 

No 
If |error| < ε 

Yes 

Increment iteration 
count N=N+1 



Using Decoupled method, determine the phasor values of the voltages at bus 2 and 3. Take 

base MVA=100. 

      

 

 

Step 1: 

 

 

 

 

Step 2: Y-Bus Formation 

 



 

 

 

 

 

 

 

Step 3: 
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DC load Flow 

DC power flow is a commonly used tool for contingency analysis. Recently, due to its 

simplicity and robustness, it also becomes increasingly used for the real-time dispatch 

and techno-economic analysis of power systems. It is a simplification of a full power flow 

looking only at active power. 

 

 

 

 



 

 

 

 



 

 

 

Comparison of DC and AC power flow 

S. No AC power flow DC power flow 

1 
Real (P) and reactive power (Q) is 
calculated  

Only real power (P) is calculated 

2 
Resistance and reactance are 
considered  

Resistance is neglected and only reactance is 
considered 

3 
Iterative procedure gives the real 
and reactive power  

Matrix operation gives the real power and no 
iterative process 

4 
Takes more time for the 

calculation 
Compute fast to get real power 

5 Non linear model Linear model 

 



Unit – III 

Syllabus 

UNIT III SHORT CIRCUIT ANALYSIS 

PER-UNIT SYSTEM OF REPRESENTATION: Per-Unit equivalent reactance network of a three phase Power System, Numerical Problems. 
Needs and assumptions for short circuit analysis 
SYMMETRICAL FAULT ANALYSIS: Short Circuit Current and MVA Calculations, Fault levels, Application of Series Reactors, Numerical 
Problems. 
 
SYMMETRICAL COMPONENT THEORY: Symmetrical Component Transformation, Positive, Negative and Zero sequence components: 
Voltages, Currents and Impedances. Sequence Networks: Positive, Negative and Zero sequence Networks, Numerical Problems. 
UNSYMMETRICAL FAULT ANALYSIS: LG, LL, LLG faults without and with fault impedance, Numerical Problems. 

 

What is the Necessity of Per-Unit? 

The various component of power system like alternator, motors and transformers, etc.., have 
their voltage, power, current and impedance rating in KV, KVA, KA and ohm respectively. Hence, 
for analysis purpose the base value is chosen for voltage, power, current and impedance. All the 
voltage, power, current and impedance ratings of the components are expressed as a % or per 
unit of the base value. 

 

Explain the importance of Per Unit System? 

What is the Per Unit System? Why it is required in power system calculation? 

What are the advantages of Per Unit System? 

 

 

 

Formulas Used: 

  Per Unit value = 
Value Base

Value Actual
 

1. Base MVA, 

2. Base KV, 

3. Base Value of Impedance, 
MVA Base

KV) (Base 2

bZ   

4. Base Value of Current, 
KV Base

MVA Base
bI   

 

For change of base: 
















MVA base old

MVA base new

KV base new

KV base old
2

old

pu

new

pu ZZ  











er transformof rating LT

er transformof rating HT
side LTon  KV baseside HTon  KV base New  











er transformof rating HT

er transformof rating LT
side HTon  KV baseside LTon  KV base New  

Algorithm: 



1) Get base MVA and base KV values 

2) Get actual impedance value in ohms 

3) Calculate the base Impedance value using the formula 

4) Calculate the Per Unit value of the Impedance of power system components  

5) Display the Result 

 

Exercise Problems 

1) A 3 phase generator with rating 1000KVA, 33KV has its armature resistance and 
synchronous reactance as 20 ohm/ph and 70 ohm/ph. calculate the Per Unit 
Impedance Value of the generator. 

  

Manual Calculation 

Base Impedance, 
MVA Base

KV) (Base 2

bZ  

MVA base=1000KVA = 1 MVA 

Base KV = 33KV 

1

(33)2

bZ  

Zb = 1089 ohms 

ZActual = R+jX = (20+j70) ohms 

 Z

Z

Base

ActualpuZ  

 1089

j7020 
puZ  

Zpu = 0.0184 + j 0.0643 pu 

 

 

Exercise Problem 

2) Calculate the Per Unit reactance value of the given transmission line of length 64km 
having the reactance of 0.5 ohm/km. Take Base MVA = 300 and Base KV=230. 

  

Solution: 

Zbase = (KVbase)2 / MVAbase = 2302 / 300 = 176.333 ohms 

Zactual = 64 x j0.5 = j32 ohms 

Zpu = Zactual / Zbase = (0+j32) / 176.333 = 0 + j 0.1815 pu 

 

 

 

 

 

 



 

Exercise Problem 

3) A 300 MVA, 20 KV, 3 phase generator has a sub transient reactance of 20%. The 
generator supplies 2 synchronous motors through a 64 km transmission line having 
transformers both ends. In this T1 is 3 phase transformer and T2 is  made of 3 single 
phase transformer of rating 100 MVA, 127 / 13.2 KV, 10% reactance. Series reactance of 
the transmission line is 0.5 ohm/km. select the generator rating as base values. 

 

Solution: 

Base Mega Volt Ampere, MVAb,new = 300 MVA 

Base Kilo Volt, KVb,new = 20 KV 

  

Reactance of Generator G  

p.u reactance of generator = 20 % = 0.2 pu 

  

Reactance of Transformer T1  
















MVA base old

MVA base new

KV base new

KV base old
2

old

pu

new

pu ZZ

 

Xpu, old = 10% = 0.1 pu 

KVb, old=20 KV 

MVAb, old=350 MVA 

 

The new pu reactance of T1 = Xpu, old *  (KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

    = 0.1 * (20/20)2 * (300/350) = 0.0857 pu 

 

 

Reactance of Transmission Line 

Reactance per km  = j 0.5 Ω  

Total reactance  =  64* j0.5 = j32 Ω 

ZActual=j32 Ω 



MVAb, new = 300 MVA 

KVb, new (LT side)= 20KV 











er transformof rating LT

er transformof rating HT
side LTon  KV baseside HTon  KV base New  

New base KV on HT side of T1 = Base KV on LT side * (HT voltage rating of T1 / LT voltage rating of T1) 

         = 20 * (230/20) = 230 KV 

KVb, new = 230KV 

MVAb, new = 300 MVA 

 

Base impedance, Zb =  (KVb)2 / MVAb = 230 2 / 300 = 176.33 Ω 

 

Per Unit reactance of Transmission Line =(ZActual/Zb)=(32 / 176.33) = 0.1815 pu 

  

 

Reactance of Transformer T2 

 

KVb, new = 230KV 

MVAb, new = 300 MVA 

 

Voltage ratio of line voltage of 3 phase transformer bank = (√3 * 127)/13.2=220/13.2 KV  

 

MVAb, old= 3 x 100 = 300 MVA 

KVb, old = 220KV 

Xpu, old = 10 % = 0.1 pu 

 

New pu reactance of T2 = Xpu, old *(KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

          = 0.1 *(220/230)2 * (300/300) 

         = 0.0915 pu 

 

 

 

Reactance of M1 











er transformof rating HT

er transformof rating LT
side HTon  KV baseside LTon  KV base New

 









220

13.2
302side LTon  KV base New

 

New base KV, KVb, new=13.8 KV 

MVAb, new=300 MVA 

KVb, old=13.2 KV 

MVAb, old=200 MVA 



Xpu, old = 20% = 0.2 pu 

pu reactance of M1  = Xpu, old *(KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

   = 0.2*(13.2/13.8)2 * (300/200) = 0.2745 pu 

  

 

Reactance of M2 

KVb, new=13.8 KV 

MVAb, new=300 MVA 

KVb, old=13.2 KV 

MVAb, old=100 MVA 

Xpu, old = 20% = 0.2 pu 

 

pu reactance of M2  =  Xpu, old *(KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

   = 0.2*(13.2/13.8)2 * (300/100) = 0.549 pu 

 

 

Exercise Problem 

4) Calculate the Per Unit values for the given single line diagram of the power system. Take 
base MVA as 100 and base KV as 220 in 50 ohm line. The ratings of the generator, motor 

and transformers are given below: 

 

  

Generator: 40 MVA, 25 KV, X” = 20% 

Synchronous motor: 50 MVA, 11 KV, X” = 30% 

Y-Y Transformer: 40 MVA, 33 / 220 KV, X=15% 

Y-Δ Transformer: 30 MVA, 11 / 220 KV (Δ / Y), X=15% 

  

Solution: 

Base Mega Volt Ampere, MVAb,new = 100 MVA 

Base Kilo Volt, KVb,new = 220 KV 

  

Reactance of Transmission line  



Base impedance, Zb = (KVb,new)2 / MVAb,new = 2202 / 100 = 484 Ω 

ZActual = 50 Ω 

pu reactance = (Actual Reactance / Base impedance) = 50 / 484 = 0.1033 pu 

  

Reactance of Transformer T1 

New base KV on LT side of T1   = Base KV on HT side * (LT rating / HT rating) 

     = 220 * (33 / 220) = 33 KV 

KVb,new = 33 KV 

MVAb,new = 100 MVA 

MVAb, old= 40 MVA,  

KVb, old = 33 KV,  

Xpu, old=15% = 0.15 pu 

pu reactance = Xpu, old * (KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

  = 0.15*(33/33)2 * (100 / 40) = 0.375 pu 

  

 

Reactance of Generator G 

KVb,new = 33 KV 

MVAb,new = 100 MVA 

MVAb, old= 40 MVA,  

KVb, old = 25 KV,  

Xpu, old=20% = 0.2 pu 

 

New pu reactance  = Xpu, old * (KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

   = 0.2 * (25/33)2 * (100/40) = 0.287 pu 

  

 

Reactance of Transformer T2 

Base KV on LT side  = Base KV on HT side * ( LT rating / HT rating) 

   = 220 * (11/220) = 11 KV 

KVb,new = 11 KV 

MVAb,new = 100 MVA 

MVAb, old= 30 MVA,  

KVb, old = 11 KV,  

Xpu, old=15% = 0.15 pu 

 

pu reactance = Xpu, old * (KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

  = 0.15 * (11/11)2 * (100/30) = 0.5 pu 

  

Reactance of Synchronous Motor 



KVb,new = 11 KV 

MVAb,new = 100 MVA 

MVAb, old= 50 MVA,  

KVb, old = 11 KV,  

Xpu, old=30% = 0.3 pu 

 

pu reactance Xpu,new = Xpu, old * (KVb, old / KVb, new)2 * (MVAb, new / MVAb, old ) 

  = 0.3 * (11/11)2 * (100/50) = 0.6 pu 

 

 

SYMMETRICAL FAULT ANALYSIS 

 

What is fault in power system? 

Fault is a defect and not able to provide supply to the healthy loads. It happens due to partial or 
full damage of insulation. This fault creates abnormal voltage and current in the power system. 
This will harm the healthy devices connected in the power system and hence it has to be avoided 
or protected. There are two types of fault 

1) Open circuit fault 
2) Short circuit fault 

 

Open Circuit Faults 

These faults occur due to the failure of one or more conductors. The figure below illustrates the 
open circuit faults for single, two and three phases (or conductors) open condition. 

The most common causes of these faults include joint failures of cables and overhead lines, and 
failure of one or more phase of circuit breaker and also due to melting of a fuse or conductor in 
one or more phases. Open circuit faults are also called as series faults 

 

Consider that a transmission line is working with a balanced load before the occurrence of open 
circuit fault. If one of the phase gets melted, the actual loading of the alternator is reduced and 
this cause to raise the acceleration of the alternator, thereby it runs at a speed slightly greater 
than synchronous speed. This over speed causes over voltages in other transmission lines. 



Thus, single and two phase open conditions can produce the unbalance of the power system 
voltages and currents that causes great damage to the equipments. 

Causes 

Broken conductor and malfunctioning of circuit breaker in one or more phases. 

Effects 

 Abnormal operation of the system 

 Danger to the personnel as well as animals 

 Exceeding the voltages beyond normal values in certain parts of the network, which 
further leads to insulation failures and developing of short circuit faults. 

Although open circuit faults can be tolerated for longer periods than short circuit faults, these 
must be removed as early as possible to reduce the greater damage. 

 

Short Circuit Faults 

A short circuit can be defined as an abnormal connection of very low impedance between two 
points of different potential, whether made intentionally or accidentally. 

These are the most common and severe kind of faults, resulting in the flow of abnormal high 
currents through the equipment or transmission lines. If these faults are allowed to persist even 
for a short period, it leads to the extensive damage to the equipment. 

Short circuit faults are also called as shunt faults. These faults are caused due to the insulation 
failure between phase conductors or between earth and phase conductors or both. 

The various possible short circuit fault conditions include three phase to earth, three phase clear 
of earth, phase to phase, single phase to earth, two phase to earth and phase to phase plus 
single phase to earth as shown in figure. 

The three phase fault clear of earth and three phase fault to earth are balanced or symmetrical 
short circuit faults while other remaining faults are unsymmetrical faults 

 



 

Causes 

These may be due to internal or external effects 

 Internal effects include breakdown of transmission lines or equipment, aging of 
insulation, deterioration of insulation in generator, transformer and other electrical 
equipments, improper installations and inadequate design. 

 External effects include overloading of equipments, insulation failure due to lighting 
surges and mechanical damage by public. 

Effects 

 Arcing faults can lead to fire and explosion in equipments such as transformers and 
circuit breakers. 

 Abnormal currents cause the equipments to get overheated, which further leads to 
reduction of life span of their insulation. 

 The operating voltages of the system can go below or above their acceptance values that 
creates harmful effect to the service rendered by the power system. 

 The power flow is severely restricted or even completely blocked as long as the short 
circuit fault persists. 

 

Symmetrical and Unsymmetrical Faults 

As discussed above that faults are mainly classified into open and short circuit faults and again 
these can be symmetrical or unsymmetrical faults. 

 

Symmetrical Faults 

Symmetrical fault is also called as balanced fault. This fault occurs when all the three phases 
are simultaneously short circuited. 

These faults rarely occur in practice as compared with unsymmetrical faults. Two kinds of 
symmetrical faults include line to line to line (L-L-L) and line to line to line to ground (L-L-L-G) as 
shown in figure below. 



 

A rough occurrence of symmetrical faults is in the range of 2 to 5% of the total system faults. 
However, if these faults occur, they cause a very severe damage to the equipments even though 
the system remains in balanced condition. 

The analysis of these faults is required for selecting the rupturing capacity of the circuit 
breakers, choosing set-phase relays and other protective switchgear. These faults are analyzed 
on per phase basis using bus impedance matrix or Thevenins’s theorem. 

 

Unsymmetrical Faults 

The most common faults that occur in the power system network are unsymmetrical faults. This 
kind of fault gives rise to unsymmetrical fault currents (having different magnitudes with 
unequal phase displacement). These faults are also called as unbalanced faults as it causes 
unbalanced currents in the system. 

Up to the above discussion, unsymmetrical faults include both open circuit faults (single and 
two phase open condition) and short circuit faults (excluding L-L-L-G and L-L-L). 

The figure below shows the three types of symmetrical faults occurred due to the short circuit 
conditions, namely phase or line to ground (L-G) fault, phase to phase (L-L) fault and double line 
to ground (L-L-G) fault. 

 

https://www.electronicshub.org/wp-content/uploads/2015/11/Symmetrical-Faults.jpg
https://www.electronicshub.org/wp-content/uploads/2015/11/Unsymmetrical-Faults.jpg


A single line-to-ground (LG) fault is one of the most common faults and experiences show that 
70-80 percent of the faults that occur in power system are of this type. This forms a short circuit 
path between the line and ground. These are very less severe faults compared to other faults. 

A line to line fault occur when a live conductor get in contact with other live conductor. Heavy 
winds are the major cause for this fault during which swinging of overhead conductors may 
touch together. These are less severe faults and its occurrence range may be between 15-20%. 

In double line to ground faults, two lines come into the contact with each other as well as with 
ground. These are severe faults and the occurrence these faults is about 10% when compared 
with total system faults. 

Unsymmetrical faults are analyzed using methods of unsymmetrical components in order to 
determine the voltage and currents in all parts of the system. The analysis of these faults is more 
difficult compared to symmetrical faults. 

This analysis is necessary for determining the size of a circuit breaker for largest short circuit 
current. The greater current usually occurs for either L-G or L-L fault. 

 

Protection Devices against Faults 

When the fault occurs in any part of the system, it must be cleared in a very short period in 
order to avoid greater damage to equipments and personnel and also to avoid interruption of 
power to the customers. 

The fault clearing system uses various protection devices such as relays and circuit breakers to 
detect and clear the fault. Some of these fault clearing or faults limiting devices are given below. 

Fuse 

It opens the circuit whenever a fault exists in the system. It consists of a thin copper wire 
enclosed in a glass or a casing with two metallic contacts. The high fault current rises the 
temperature of the wire and hence it melts. A fuse necessitates the manual replacement of wire 
each time when it blows. 

                                  

 

 

Circuit Breaker 

It is the most common protection device that can make or break the circuit either manually or 
through remote control under normal operating conditions. 

There are several types of circuit breakers available depending on the operating voltage, 
including air brake, oil, vacuum and SF6 circuit breakers. 

Low current Fuse Rewire able Fuse HRC Fuse 



  

 

 

Protective Relays 

These are the fault detecting devices. These devices detect the fault and initiate the operation of 
the circuit breaker so as to isolate the faulty circuit. A relay consists of a magnetic coil and 
contacts (NC and NO). The fault current energizes the coil and this causes to produce the field, 
thereby the contacts get operated. 

 

Relay Photo 

 

Some of the types of protective relays include 

 Electro Magnetic relays 

 Impedance relays 

 Directional relays 

 Pilot relays 

 Differential relays 

 

 

What is fault analysis? 

Short circuit study is one of the basic power system analysis problems. It is also known as fault 
analysis. When a fault occurs in a power system, bus voltages reduce and large current flows in 
the lines. This may cause damage to the equipments. Hence faulty section should be isolated 
from the rest of the network immediately on the occurrence of a fault. To isolate the faulty 
section relay and circuit breakers are used.  

Miniature Circuit Breaker 



The calculation of currents in network elements for different types of faults occurring at different 
locations is called SHORT CIRCUIT STUDY. The results obtained from the short circuit study are 
used to find the relay settings and the circuit breaker ratings which are essential for power 
system protection 

 

What is Short Circuit Analysis?  

Short circuit analysis essentially consists of determining the steady state solution of a linear 
network with balanced three phase excitation. Such an analysis provides currents and voltages 
in a power system during the faulted condition. This information is needed to determine the 
required interrupting capacity of the circuit breakers and to design proper relaying system 

 

What is the Need for short circuit analysis? 

A Short Circuit Analysis will help to ensure that personnel and equipment are protected by 
establishing proper interrupting ratings of protective devices (circuit breaker and fuses). To 
design the protective scheme and for settings of the relay and circuit breaker short circuit 
analysis is important. 

The purpose of short circuit analysis of power systems is to assess the vulnerability of the 
system to abnormal conditions resulting from a partial or complete breakdown of the power 
system. 

 

What are the assumptions in short circuit analysis? 

As it is usual in most short circuit studies, some basic assumptions are made to facilitate the 
computational task of fault analysis. These basic assumptions are as follows 

(i) All load currents are negligible 

(ii) All generated voltages are equal in phase and magnitude to the positive sequence pre-fault 
voltage. i.e 1.0 pu and angle 00  

(iii) The networks are balanced except at the fault points.  

(iv) All shunt admittances (line charging susceptance, etc.) are negligible 

(v) System resistance is neglected  

 

  



Fault current 

 

Current wave form 

 

 

Symmetrical Faults 

Symmetrical (L-L-L) fault occurs infrequently, as for example, when a line, which has been made 
safe for maintenance and/or repairs by clamping all the three phases to earth, is accidently 
made alive or when, due to slow fault clearance, an earth fault spreads across to the other two 
phases or when a mechanical excavator cuts quickly through a whole cable. It is an important 
type of fault in that it results in an easy calculation and generally, a pessimistic answer. 

The analysis of symmetrical (L-L-L) faults includes the determination of the voltage at any point 
(or bus) in the power system network, the current in any branch and value of reactance 
necessary to limit the fault current to any desired value. Such calculations provide the necessary 
data for selection of circuit breakers and design of protective scheme. 

The circuit breaker MVA breaking capacity is based on 3-phase fault MVA. Since the circuit 
breakers are manufactured in preferred standard sizes, e.g., 250, 500, 750 MVA, high precision 
is not required in calculations of 3-phase fault level at a point in a power system. Moreover, the 
system impedances are also never known accurately. 

 

It is customary to perform the short circuit analysis under the following simplifying 
assumptions: 

1. Load currents are considered negligible as compared to fault currents. 

2. Shunt elements in the transformer model that account for magnetizing current and core loss 
are neglected. The transformer is represented by a reactance in series, as transformer resistance 
is quite low in comparison with its reactance. 

3. Shunt capacitances of the transmission lines are neglected. 

4. System resistance is neglected and only inductive reactance of the system is taken into 
account. This assumption cannot be applied in case overhead lines or underground cables of 



considerable length are included in the network. A transmission line is represented by series 
reactance (and resistance). 

5. The emfs of all the generators are assumed to be equal to 1 ∠0° per unit. This means that the 
system voltage is at its nominal value and the system is operating on no load at the time of 
occurrence of fault. The selection of zero phase for one source is arbitrary and convenient. 
Assuming that all sources are in phase and of the same magnitude is equivalent to neglecting 
pre-fault load current. When desirable, the load current can be taken into account, at a later 
stage by superposition. 

6. The effect of dc component is accounted for by using correction factors. The correction or 
multiplying factor for determination of breaking capacity of a circuit breaker depends on the 
speed of the circuit breaker. For example, a two-cycle circuit breaker might require a factor 1.4 
whereas with an eight-cycle breaker a factor 1.0 would be sufficient. 

 

Generator reactances are normally taken as their subtransient values in order to depict the most 
pessimistic condition. However, if transient current is to be determined, then transient 
reactances should be used. 

For simple systems, calculations can be made by network reduction technique, which will be 
discussed here. However, for modern complex systems, ac network analyzers or digital 
computers are used for fault calculations. 

 

Network Reduction Technique: 

Because of the balanced nature of fault and the system, any condition which applies to one 
phase applies equally to the remaining two phases. Thus the problem is reduced itself to a single 
phase problem involving a single supply source acting through the equivalent network 
impedance up to the fault. The equivalent network impedance up to the fault can be obtained by 
network reduction that involves series- parallel combinations and star/delta or delta/star 
conversion of reactances. 

Various steps involved in the short circuit calculations are given below: 

1. Make out a single line diagram of the complete network indicating on each component, its 
rating, voltage, resistance and reactance. 

2. Choose a common base kVA (or MVA) and convert all the resistances and reactances in per 
unit values as referred to common base kVA (or MVA). 

3. From the single line diagram draw a single line reactance (or impedance) diagram showing one 
phase and neutral. In this diagram write down the reactances (or impedances) of the elements in 
per unit values, determined under step 2. 

4. Reduce the reactance (or impedance) diagram, by network reduction technique keeping the 
identity of the fault point intact. Find the reactance of the system as seen from the fault point 
(Thevenin reactance). 

 

 

 

 



Symmetrical Components March 11, 2013 

An Introduction to Symmetrical 
Components, System Modeling and  

Fault Calculation 
 
 
 

 
 
 

Presented at the 
 

30th Annual 
HANDS-ON Relay School 

March 11 - 15, 2013 
 

Washington State University 
Pullman, Washington 

 
 
 
 
 

By Stephen Marx, and Dean Bender 
Bonneville Power Administration  



  



Symmetrical Components Page 1 

Introduction 
 

The electrical power system normally operates in a balanced three-phase sinusoidal steady-state 

mode.  However, there are certain situations that can cause unbalanced operations.  The most 

severe of these would be a fault or short circuit.  Examples may include a tree in contact with a 

conductor, a lightning strike, or downed power line. 

 

In 1918, Dr. C. L. Fortescue wrote a paper entitled “Method of Symmetrical Coordinates 

Applied to the Solution of Polyphase Networks.”  In the paper Dr. Fortescue described how 

arbitrary unbalanced 3-phase voltages (or currents) could be transformed into 3 sets of balanced 

3-phase components, Fig I.1.  He called these components “symmetrical components.”  In the 

paper it is shown that unbalanced problems can be solved by the resolution of the currents and 

voltages into certain symmetrical relations.   

 

C

B

C

B

 
Fig I.1 

 

By the method of symmetrical coordinates, a set of unbalanced voltages (or currents) may be 

resolved into systems of balanced voltages (or currents) equal in number to the number of phases 

involved.  The symmetrical component method reduces the complexity in solving for electrical 

quantities during power system disturbances.  These sequence components are known as 

positive, negative and zero-sequence components, Fig I.2 

 

 
Fig I.2 
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The purpose of this paper is to explain symmetrical components and review complex algebra in 

order to manipulate the components.  Knowledge of symmetrical components is important in 

performing mathematical calculations and understanding system faults.  It is also valuable in 

analyzing faults and how they apply to relay operations. 

 

 

1. Complex Numbers 
 

The method of symmetrical components uses the commonly used mathematical solutions applied 

in ordinary alternating current problems.  A working knowledge of the fundamentals of algebra 

of complex numbers is essential.  Consequently this subject will be reviewed first. 

 

Any complex number, such as jba + , may be represented by a single point p, plotted on a 

Cartesian coordinates, in which a  is the abscissa on the x axis of real quantities and b the 

ordinate on the y axis of imaginary quantities.  This is illustrated in Fig. 1.1 

 

θ

 
Fig. 1.1 

 

Referring to Fig. 1.1, let r  represent the length of the line connecting the point p to the origin 

and θ  the angle measured from the x-axis to the line r.  It can be observed that  

 

 

θcos⋅= ra  (1.1) 

θsin⋅= rb  (1.2) 

 

 

2. Properties of Phasors 
 

A vector is a mathematical quantity that has both a magnitude and direction.  Many quantities in 

the power industry are vector quantities.  The term phasor is used within the steady state 

alternating linear system.  It is used to avoid confusion with spatial vectors: the angular position 

of the phasor represents position in time, not space.  In this document, phasors will be used to 

document various ac voltages, currents and impedances. 

 

A phasor quantity or phasor, provides information about not only the magnitude but also the 

direction or angle of the quantity.  When using a compass and giving directions to a house, from 

a given location, a distance and direction must be provided.  For example one could say that a 

house is 10 miles at an angle of 75 degrees (rotated in a clockwise direction from North) from 

where I am standing.  Just as we don’t say the other house is -10 miles away, the magnitude of 
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the phasor is always a positive, or rather the absolute value of the “length of the phasor.”  

Therefore giving directions in the opposite direction, one could say that a second house is 10 

miles at an angle of 255 degrees.  The quantity could be a potential, current, watts, etc. 

 

Phasors are written in polar form as  

 

θ∠= YY  (2.1) 

θθ sincos YjY +=  (2.2) 

 

where Y  is the phasor, Y is the amplitude, magnitude or absolute value and θ is the phase angle 

or argument.  Polar numbers are written with the magnitude followed by the ∠ symbol to 

indicate angle, followed by the phase angle expressed in degrees.  For example o
Z 90110∠= .  

This would be read as 110 at an angle of 90 degrees.  The rectangular form is easily produced by 

applying Eq. (2.2) 

 

The phasor can be represented graphically as we have demonstrated in Fig. 1.1, with the real 

components coinciding with the x axis. 

 

When multiplying two phasors it is best to have the phasor written in the polar form.  The 

magnitudes are multiplied together and the phase angles are added together.  Division, which is 

the inverse of multiplication, can be accomplished in a similar manner.  In division the 

magnitudes are divided and the phase angle in the denominator is subtracted from the phase 

angle in the numerator. 

 

Example 2.1 

Multiply BA ⋅  where o
A 355∠= and o

B 453∠= .   

Solution 

( ) ( )ooooBA 453535453355 +∠⋅=∠⋅∠=⋅  
o8015∠=  

 

Example 2.2 

Solve 
D

C
 where o

C 3515∠= and o
D 503∠= .   

Solution 

( )oo

o

o

D

C
5035

3

15

503

3515
−∠








=

∠

∠
=  

o155 −∠=  
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3. The j and a operator 
 

Recall the operator j.  In polar form, oj 901∠= .  Multiplying by j  has the effect of rotating a 

phasor o90  without affecting the magnitude. 

 

Table 3.1 - Properties of the vector j 

 

0.00.11 j+=  
oj 901∠=  

118012 −=∠= oj  

 

jj o −=∠= 27013  
oj 901 −∠=−  

1−=j  

 

Example 3.1 

Compute jR  where o
R 6010∠= . 

Solution 

)6010(901 oojR ∠∠=  
o15010∠=  

Notice that multiplication by the j operator rotated the Phasor R  by o90 , but did not change the 

magnitude.  Refer to Fig. 3.1 

 

R

 

(a) R  

 

jR

R

 

(b) Rj  

Fig. 3.1. j effects 
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In a similar manner the a operator is defined as unit vector at an angle of 120
o
, written as 

o
a 1201∠= . The operator a

2
, is also a unit vector at an angle of 240

o
, written o

a 24012 ∠= .   

 

Example 3.2 

Compute aR  where o
R 6010∠= . 

Solution 

)6010(1201 ooaR ∠∠=  
o18010∠=  

R

 

(a) A  

 

aR

R

 

(b) Rj  

Fig. 3.2. a effects 

 

Table 3.2 - Properties of the vector a 

 

0.00.11 j+=  
o

a 1201∠=  
o

a 24012 ∠=  
oo

a 0136013 ∠=∠=  

01 2 =++ aa  

12 −=+ aa  
o

a 6011 ∠=+  

o
a 6011 2 −∠=+  

32 jaa =−  

32 jaa −=−  

o
a 3031 −∠=−  

o
a 3031 2 ∠=−  
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4. The three-phase System and the relationship of the 3  
 

In a Wye connected system the voltage measured from line to line equals the square root 

of three, 3 , times the voltage from line to neutral.  See Fig. 4.1 and Eq. (4.1).  The line 

current equals the phase current, see Eq. (4.2) 

 

 
Fig. 4.1 

 

LNLL VV 3=  (4.1) 

Φ= IIL  (4.2) 

 

In a Delta connected system the voltage measured from line to line equals the phase 

voltage.  See Fig. 4.2 and Eq. (4.3).  The line current will equal the square root of three, 

3 ,  times the phase current, see Eq. (4.4) 

 

VLL

IΦIΦ

IL

 
 

Fig. 4.2 

 

Φ= VVLL  (4.3) 

Φ= IIL 3  (4.4) 
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The power equation, for a three phase system, is  

 

LLLIVS 3=  (4.5a) 

ψcos3 LLLIVP =  (4.5b) 

ψsin3 LLLIVQ =  (4.5c) 

 

where S is the apparent power or complex power in volt-amperes (VA).  P is the real 

power in Watts (W, kW, MW).  Q is the reactive power in VARS (Vars, kVars, MVars). 

 

 

5. The per-unit System 
 
5.1 Introduction 
 

In many engineering situations it is useful to scale, or normalize, dimensioned quantities.  

This is commonly done in power system analysis.  The standard method used is referred 

to as the per-unit system.  Historically, this was done to simplify numerical calculations 

that were made by hand.  Although this advantage is eliminated by the calculator, other 

advantages remain.  

• Device parameters tend to fall into a relatively narrow range, making erroneous 

values conspicuous. 

• Using this method all quantities are expressed as ratios of some base value or 

values.  

• The per-unit equivalent impedance of any transformer is the same when referred 

to either the primary or the secondary side. 

• The per-unit impedance of a transformer in a three-phase system is the same 

regardless of the type of winding connections (wye-delta, delta-wye, wye-wye, or 

delta-delta). 

• The per-unit method is independent of voltage changes and phase shifts through 

transformers where the base voltages in the winding are proportional to the 

number of turns in the windings. 

• Manufactures usually specify the impedance of equipment in per-unit or percent 

on the base of its nameplate rating of power (usually kVA) and voltage (V or kV). 

 

The per-unit system is simply a scaling method.  The basic per-unit scaling equation is 

 

valuebase

valueactual
unitper

_

_
=−  (5.1) 

 

The base value always has the same units as the actual value, forcing the per-unit value to 

be dimensionless.  The base value is always a real number, whereas the actual value may 

be complex.  The subscript pu  will indicate a per-unit value.  The subscript base  will 
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indicate a base value, and no subscript will indicate an actual value such as Amperes, 

Ohms, or Volts. 

 

Per-unit quantities are similar to percent quantities.  The ratio in percent is 100 times the 

ratio in per-unit.  For example, a voltage of 70kV on a base of 100kV would be 70% of 

the base voltage.  This is equal to 100 times the per unit value of 0.7 derived above. 

 

 

The first step in using per-unit is to select the base(s) for the system. 

 

Sbase
 
= power base, in VA.  Although in principle Sbase may be selected arbitrarily, in 

practice it is typically chosen to be 100 MVA. 

 

Vbase = voltage base in V.  Although in principle Vbase is also arbitrary, in practice Vbase is 

equal to the nominal line-to-line voltage.  The term nominal means the value at which the 

system was designed to operate under normal balanced conditions. 

 

From Eq. (4.5a) it follows that the base power equation for a three-phase system is: 

 

basebasebase IVS 33 =Φ  (5.2) 

 

Solving for current: 

 

base

base
V

S
I base

3

3Φ=   

 

Because S3Φbase can be written as kVA or MVA and voltage is usually expressed in kilo-

volts, or kV, current can be written as: 

 

amperes
kV

kVA
I

base

base
base

3
=  (5.3) 

Solving for base impedance: 

 

base

base

base

base
base

S

V

I

V
Z

2

==   

 

ohms
kVA

xkV
Z

base

base
base

10002

=  (5.4a) 

or 

ohms
MVA

kV
Z

base

base
base

2

=  (5.4b) 
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Given the base values, and the actual values: IZV = , then dividing by the base we are 

able to calculate the pu values 

 

pupupu

basebasebase

ZIV
ZI

IZ

V

V
=⇒=  

After the base values have been selected or calculated, then the per-unit impedance 

values for system components can be calculated using Eq. (5.4b) 

 

)(
)(

2
Ω⋅








=

Ω
= Z

kV

MVA

Z

Z
Z

base

base

base

pu  (5.5a) 

or 

)(
1000 2

Ω⋅








⋅
= Z

kV

kVA
Z

base

base
pu  (5.5b) 

 

It is also a common practice to express per-unit values as percentages (i.e. 1 pu = 100%).  

(Transformer impedances are typically given in % at the transformer MVA rating.)  The 

conversion is simple 

 

100

_ valuepercent
unitper =−  

 

Then Eq. (5.5a) can be written as 

 

( ) ( )
22 10

100
%

base

base

base

base

kV

ZkVA

kV

ZMVA
Z

Ω
=

Ω⋅
=  (5.6) 

 

It is frequently necessary, particularly for impedance values, to convert from one (old) 

base to another (new) base.  The conversion is accomplished by two successive 

application of Eq. (5.1), producing: 

 









=

new

base

old

baseold

pu

new

pu
Z

Z
ZZ  

 

Substituting for old

baseZ  and new

baseZ  and re-arranging the new impedance in per-unit equals: 

 
2

















=

new

base

old

base

old

base

new

baseold

pu

new

pu
kV

kV

kVA

kVA
ZZ  (5.7) 

 

In most cases the turns ratio of the transformer is equivalent to the system voltages, and 

the equipment rated voltages are the same as the system voltages.  This means that the 

voltage-squared ratio is unity.  Then Eq. (5.7) reduces to  
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







=

old

base

new

baseold

pu

new

pu
MVA

MVA
ZZ  (5.8) 

 

We can quickly change from one impedance value in ohms, to another impedance value 

in ohms by dividing by the old base voltage and multiplying by the new base voltage in 

ohms.  This is shown in Eq. (5.9) 
2









⋅=

old

base

new

baseold

ohm

new

ohm
kV

kV
ZZ  (5.9) 

 

 

Example 5.1 

A system has Sbase = 100 MVA, calculate the base current for 

a) Vbase = 230 kV 

b) Vbase = 525 kV 

Then using this value, calculate the actual line current and phase voltage 

where puI 95.4= , and puV 5.0=  at both 230 kV and 525 kV. 

 

Solution 

Using Eq. (5.3) amperes
kV

kVA
I

base

base
base

3
=  

a) AamperesIbase 251
2303

1001000
=

×

×
=  

 

b) AamperesI base 0.110
5253

1001000
=

×

×
=  

 

From Eq. (5.1)  

basepuactual III ⋅=   (5.9) 

basepuactual VVV ⋅=  (5.10) 

 

At 230 kV 

c) ( ) ( ) AAI actual 124225195.4 =⋅=  

d) ( ) ( ) kVkVVactual 1152305.0 =⋅=  

 

At 525 kV 

e) ( ) ( ) AAI actual 5440.11095.4 =⋅=  

f) ( ) ( ) kVkVVactual 2635255.0 =⋅=  

 



Symmetrical Components Page 11

Example 5.2 

A 900 MVA 525/241.5 autotransformer has a nameplate impedance of 10.14% 

a) Determine the impedance in ohms, referenced to the 525 kV side. 

b) Determine the impedance in ohms, referenced to the 241.5 kV side 

Solution 

First convert from % to pu. 

1014.0
100

%
==

Z
Zpu  

 

Arranging Eq. (5.5a) and solving for Zactual gives 

 

base

base
pu

MVA

kV
ZZ

2

)( =Ω ; therefore 

a) 
900

525
1014.0

2

525 ×=kVZ  

Ω= 05.31  

 

b) 
900

5.241
1014.0

2

5.241 ×=kVZ  

Ω= 57.6  

 

A check can be made to see if the high-side impedance to the low-side impedance 

equals the turns ratio squared. 

 

726.4
57.6

05.31
=  726.4

5.241

525
2

=







 

 

 

5.1 Application of per-unit 
 

Appling this to relay settings, a practical example can be shown in calculation of the 

settings for a relay on a transmission line.  For distance relays a common setting for zone 

1 is 85% of the line impedance.  Zone 2 should be set not less than 125% of the line, with 

care to not over reach the zone 1 of the next line section.  If this does then zone 2 will 

need to be coordinated with the next line section zone 2.  

 

Referring to Fig. 5.1 the line impedance for the 161 kV line is o
Z 813.59 ∠=  ohms.  

Using the above criteria of 85% for zone 1 and 125 % for zone 2 the relays would be set 

at 

 

For zone 1 

)8131.59%(85)(1

oZ ∠=Ω  
oZ 814.50)(1 ∠=Ω  
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For zone 2  

)8131.59%(125)(2

oZ ∠=Ω  
oZ 811.74)(2 ∠=Ω  

 

 

 

 

 

 Fig 5.1 

 

 

For the relays on the 115 kV side of the transformer, the impedance of the transformer 

needs to be calculated. From example 5.2 we see that 

200

115
06796.0

2

115 ×=kVZ  

  Ω= 494.4  

 

Next the line impedance needs referenced to the 115 kV side of the transformer.  Using 

equation 5.9 
2









⋅=

old

base

new

baseold

ohm

new

ohm
kV

kV
ZZ  (5.9) 

 

Substituting, the line impedance equals 

ohmsZ kV

ohm 3.30
161

115
3.59

2

115 =







⋅=  

Adding this to the transformer, the impedance setting for the relays on the 115 kV side of 

the transformer is o
Z 828.34 ∠=  

 

Using the same criteria for zone 1 and zone 2 reach. 

 

For zone 1 

)828.34%(85)(1

oZ ∠=Ω  
oZ 816.29)(1 ∠=Ω  

 

For zone 2 

)818.34%(125)(2

oZ ∠=Ω  
oZ 815.43)(2 ∠=Ω  

 

Given these values, one can easily see that by ignoring the base values of the voltages the 

relay settings would not be adequate.  For example if the 161 kV settings were applied to 

the 115 kV relays, zone 1 would over reach the remote terminal.  Conversely, if the 115 

Ia

xx

21

Ia

x
x

21

161 kV

115 kV

|Z| = 59.3 @ 81o ohms

Z% = 6.796

200MVA 161/115kV

|Z| = 34.8 @ 81
o
 ohms
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kV settings were applied to the 161 kV relays zone 2 would not reach past the remote 

terminal and would thus not protect the full line. 

 

 

Ia

xx

21

Ia

x
x

21

161 kV

115 kV
|Z| = 59.3 @ 81o ohms

Z% = 6.796

200MVA 161/115kV

|Z| = 34.8 @ 82o ohms

Z1 = 50.4 @ 81
o

ohms

Z2 = 74.1 @ 81
o

ohms

Z1 = 29.6 @ 82
o

ohms

Z2 = 43.5 @ 82
o

ohms  
 

Fig. 5.2 

 

5.2 Calculating actual values from per-unit 
 

In the following sections we will discuss symmetrical faults.  The analysis of the faults 

uses the per-unit.  A impedance and voltage of the system is express in per-unit.  Then 

the fault current and fault voltage is solved and that value will be given in per unit.  Next 

we need to convert from per-unit to actual amps and volts by using the base values.  

Using the above equations it is easy to prove the following equations. 

 

The MVA for a three phase fault is given as  

PUZ

MVA
MVA

Fault

Base
Fault =  (5.10) 

Or 

PUZ
MVA

Fault

Fault

100
=  for a 100 MVABase (5.11 a) 

 

PUZ

I
I

Fault

Base

CurrentFault =_  (5.12) 

Or 

( ) ( )
BaseFault

CurrentFault
kVPUZ

I
3

000,100
_

⋅
=  (5.12 a) 

 

5.3 Converting per-unit 
 

Before using the per-unit impedance of a transformer from a manufacture nameplate you 

must first convert it to a per-unit value of your system.  Typically the three-phase power 

base of 100MVA is used.  This is done by first converting the per unit impedance to an 

actual impedance (in ohms) at 525kV and then converting the actual impedance to a per-

unit impedance on the new base.  Repeat, this time converting the per unit impedance to 
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an actual impedance (in ohms) at 241.5kV and then converting the actual impedance to a 

per-unit impedance on the new base. 

 

In the problem 3 at the end of this document, the transformer nameplate data is for a ratio 

of 525/241.5kV or 2.174, whereas BPA’s ASPEN model uses nominal voltages of 525kV 

and 230kV for a ratio of 2.283.  Because BPA used a transformer ratio in ASPEN model 

that was different than the transformer nameplate values, we have a discrepancy in the 

per-unit impedance values that we obtained.  The problem arises because when a 

transformer is applied to the BPA system the transformer tap used will often be different 

than the one used in the nameplate calculations. 

 

What is the correct way to convert the per-unit impedance to the BPA base? 

 

Because the actual impedance of the transformer will vary when different taps are used, 

the most accurate way to model the impedance would be to actually measure the 

impedance with the transformer on the tap that will normally be used on the BPA system.  

This impedance would then be converted to a per-unit value on the BPA model base.  

Since this isn’t normally possible, a close approximation can be made by assuming that 

the per-unit impedance given on the nameplate will remain the same for the different tap 

positions of the transformer.  Find the transformer tap position that most closely matches 

the ratio of the ASPEN model (2.283 for a 525/230kV transformer), then convert the 

nameplate per-unit impedance to an actual value based on either the high- or low-side 

voltage given for that tap position. This actual impedance is then converted to a per-unit 

value on the BPA model base, using the high-side BPA voltage base if the high-side 

voltage was used for the conversion to actual impedance, or using the low-side BPA 

voltage base if the low-side voltage was used for the conversion to actual impedance.  

See problem 4. 

 

 

 
6. Sequence Networks 
 

Refer to the basic three-phase system as shown in Fig. 6.1.  There are four conductors to 

be considered: a, b, c and neutral n.   

 

anV bnV cnV

cI

bI

nI

aI

 
Fig. 6.1 
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The phase voltages, pV , for the balanced 3Φ case with a phase sequence abc are 

 
o

paan VVV 0∠==  (6.1a) 

o

pbbn VVV 120−∠==  (6.1b) 

o

ppccn VVVV 2401200 −∠=+∠==  (6.1c) 

 

The phase-phase voltages, LLV , are written as 

 
o

LLbaab VVVV 30∠=−=  (6.2a) 
o

LLcbbc VVVV 90−∠=−=  (6.2b) 

o

LLacca VVVV 150∠=−=  (6.2c) 

 

Equation (6.1) and (6.2) can be shown in phasor form in Fig. 6.2. 

 

Ψ

Ψ

Ψ

 
Fig. 6.2 

There are two balanced configurations of impedance connections within a power system.  

For the wye case, as shown in Fig. 4.1, and with an impedance connection of Ψ∠Z , the 

current can be calculated as 

 

ψ−∠== o

Y

P

Y

a
Z

V

Z

V
I 0  (6.3) 

 

Where Ψ is between o90− and + o90 .  For Ψ greater than zero degrees the load would be 

inductive ( aI lags aV ).  For ψ less than zero degrees the load would be capacitive 

( aI leads aV ).   
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The phase currents in the balanced three-phase case are 

 

ψ−∠= o

pa II 0  (6.4a) 

ψ−−∠= o

pb II 120  (6.4b) 

ψ−−∠= o

pc II 240  (6.4c) 

 

See Fig. 6.2. for the phasor representation of the currents. 

 

 

7. Symmetrical Components Systems 
 

The electrical power system operates in a balanced three-phase sinusoidal operation.  

When a tree contacts a line, a lightning bolt strikes a conductor or two conductors swing 

into each other we call this a fault, or a fault on the line.  When this occurs the system 

goes from a balanced condition to an unbalanced condition.  In order to properly set the 

protective relays, it is necessary to calculate currents and voltages in the system under 

such unbalanced operating conditions.  

 

In Dr. C. L. Fortescue’s paper he described how symmetrical components can transform 

an unbalanced condition into symmetrical components, compute the system response by 

straight forward circuit analysis on simple circuit models, and transform the results back 

into original phase variables.  When a short circuit fault occurs the result can be a set of 

unbalanced voltages and currents.  The theory of symmetrical components resolves any 

set of unbalanced voltages or currents into three sets of symmetrical balanced phasors.  

These are known as positive, negative and zero-sequence components.  Fig. 7.1 shows 

balanced and unbalanced systems. 

 

B

 
Fig. 7.1 

Consider the symmetrical system of phasors in Fig. 7.2.  Being balanced, the phasors 

have equal amplitudes and are displaced 120
o
 relative to each other.  By the definition of 

symmetrical components, 1bV  always lags 1aV  by a fixed angle of 120
o
 and always has 

the same magnitude as 1aV .  Similarly 1cV  leads 1aV  by 120
o
.  It follows then that 

 

11 aa VV =  (7.1a) 

1

2

11 )2401( aa

o

b VaVV =∠=  (7.1b) 

111 )1201( aa

o

c aVVV =∠=  (7.1c) 
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Where the subscript (1) designates the positive-sequence component.  The system of 

phasors is called positive-sequence because the order of the sequence of their maxima 

occur abc. 

 

Similarly, in the negative and zero-sequence components, we deduce 

 

22 aa VV =  (7.2a) 

222 )1201( aa

o

b aVVV =∠=  (7.2b) 

2

2

22 )2401( aa

o

c VaVV =∠=  (7.2c) 

 

00 aa VV =  (7.3a) 

00 ab VV =  (7.3b) 

00 ac VV =  (7.3c) 

 

Where the subscript (2) designates the negative-sequence component and subscript (0) 

designates zero-sequence components.  For the negative-sequence phasors the order of 

sequence of the maxima occur cba, which is opposite to that of the positive-sequence.  

The maxima of the instantaneous values for zero-sequence occur simultaneously. 

 

 
Fig.7.2 

 

In all three systems of the symmetrical components, the subscripts denote the 

components in the different phases.  The total voltage of any phase is then equal to the 

sum of the corresponding components of the different sequences in that phase.  It is now 

possible to write our symmetrical components in terms of three, namely, those referred to 

the a phase (refer to section 3 for a refresher on the a operator). 
 

210 aaaa VVVV ++=  (7.4a) 

210 bbbb VVVV ++=  (7.4b) 

210 cccc VVVV ++=  (7.4c) 
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We may further simplify the notation as follows; define 
 

00 aVV =  (7.5a) 

11 aVV =  (7.5b) 

22 aVV =  (7.5c) 

 

Substituting their equivalent values 
 

210 VVVVa ++=  (7.6a) 

21

2

0 aVVaVVb ++=  (7.6b) 

2

2

10 VaaVVVc ++=  (7.6c) 

 

These equations may be manipulated to solve for 0V , 1V , and 2V  in terms of aV , bV , and 

cV .   

 

( )cba VVVV ++=
3

1
0  (7.7a) 

( )cba VaaVVV
2

1
3

1
++=  (7.7b) 

( )cba aVVaVV ++= 2

2
3

1
 (7.7c) 

 

It follows then that the phase currents are 
 

210 IIIIa ++=  (7.8a) 

21

2

0 aIIaIIb ++=  (7.8b) 

2

2

10 IaaIIIc ++=  (7.8c) 

 

The sequence currents are given by 
 

( )cba IIII ++=
3

1
0  (7.9a) 

( )cba IaaIII
2

1
3

1
++=  (7.9b) 

( )cba aIIaII ++= 2

2
3

1
 (7.9c) 

 

The unbalanced system is therefore defined in terms of three balanced systems.  Eq. (7.6) 

may be used to convert phase voltages (or currents) to symmetrical component voltages 

(or currents) and vice versa [Eq. (7.7)]. 
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Example 7.1 

Given o

aV 535∠= , o

bV 1647 −∠= , o

cV 1057∠= , find the symmetrical 

components.  The phase components are shown in the phasor form in Fig. 7.3 

 

Va

Vb

Vc

Unbalanced condition

53
o

105
o

-164o

 
Fig. 7.3 

Solution 

Using Eq. (7.7a)  

Solve for the zero-sequence component: 

( )cbaa VVVV ++=
3

1
0  

( )ooo 10571647535
3

1
∠+−∠+∠=  

o1225.3 ∠=  

 

From Eq. (7.3b) and (7.3c) 
o

bV 1225.30 ∠=  
o

cV 1225.30 ∠=  

 

Solve for the positive-sequence component: 

( )cbaa VaaVVV
2

1
3

1
++=  

( ) ( )( )ooooo 1057240116471201535
3

1
∠⋅∠+−∠⋅∠+∠=  

o100.5 −∠=  

 

From Eq. (7.1b) and (7.1c) 
o

bV 1300.51 −∠=  
o

cV 1100.51 ∠=  

 

Solve for the negative-sequence component: 

( )cbaa aVVaVV ++= 2

2
3

1
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( ) ( )( )ooooo 1057120116472401535
3

1
∠⋅∠+−∠⋅∠+∠=  

o929.1 ∠=  

 

From Eq. (7.2b) and (7.2c) 
o

bV 1489.12 −∠=  
o

cV 289.12 −∠=  

 

The sequence components can be shown in phasor form in Fig. 7.4. 

 

 
Fig. 7.4 

 

Using Eq. (7.6) the phase voltages can be reconstructed from the sequence components. 

 

 

Example 7.2 

Given o
V 1225.30 ∠= , oV 100.51 −∠= , oV 929.12 ∠= , find the phase sequence 

components.  Shown in the phasor form in Fig. 7.4 

Solution 

Using Eq. (7.6)  

 

Solve for the A-phase sequence component: 

 

210 VVVVa ++=  
ooo 929.1100.51225.3 ∠+−∠+∠=  

o530.5 ∠=  

 

Solve for the B-phase sequence component: 

 

21

2

0 aVVaVVb ++=  
ooo 1489.11300.51225.3 −∠+−∠+∠=  

o1640.7 −∠=  
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Solve for the C-phase sequence component: 

 

2

2

10 VaaVVVc ++=  
ooo 289.11100.51225.3 −∠+∠+∠=  

o1050.7 ∠=  

 

This returns the original values given in Example 5.2. 

 

This can be shown in phasor form in Fig. 7.5. 

 

Vc2

Vc0

Vc1

Va2

Va1

Va0

Vb0

Vb2

Vb1

Va

Vb

Vc

 
Fig. 7.5 

 

Notice in Fig. 7.5 that by adding up the phasors from Fig. 7.4, that the original phase, Fig. 

7.3 quantities are reconstructed. 

 

 

8. Balanced and Unbalanced Fault analysis 
 

Let’s tie it together.  Symmetrical components are used extensively for fault study 

calculations.  In these calculations the positive, negative and zero-sequence impedance 

networks are either given by the manufacturer or are calculated by the user using base 

voltages and base power for their system.  Each of the sequence networks are then 

connected together in various ways to calculate fault currents and voltages depending 

upon the type of fault. 
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Given a system, represented in Fig. 8.1, we can construct general sequence equivalent 

circuits for the system.  Such circuits are indicated in Fig. 8.2.   

 

 
Fig. 8.1 

 

The positive-sequence impedance system data for this example in per-unit is shown in 

Fig. 8.2. 

 

o
01∠

o
01∠

 
Fig. 8.2 

 

Assuming the negative-sequence equals the positive-sequence, then the negative-

sequence is shown in Fig 8.3 

 

 
Fig. 8.3 

 

The zero-sequence impedance is greater then the positive and for our purpose is assumed 

to be three times greater.  Also because of the wye-delta transformer, zero-sequence from 

the generator will not pass through the transformer.  This will be shown in section 10.2. 

Zero-sequence is shown in Fig 8.4 
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Fig. 8.4 

 

The Thevenin equivalents for each circuit is reduced and shown in Fig. 8.5 

 

1I

1Vo01∠

2I

2V

0I

0V

 
Fig. 8.5 

 

Each of the individual sequence may be considered independently.  Since each of the 

sequence networks involves symmetrical currents, voltages and impedances in the three 

phases, each of the sequence networks may be solved by the single-phase method.  After 

converting the power system to the sequence networks, the next step is to determine the 

type of fault desired and the connection of the impedance sequence network for that fault.  

The network connections are listed in Table 8.1 

 

Table 8.1 - Network Connection 

• Three-phase fault - The positive-sequence impedance 

network is only used in three-phase faults. Fig. 8.3 

• Single Line-to-Ground fault - The positive, negative 

and zero-sequence impedance networks are connected 

in series. Fig. 8.5 

• Line-to-line fault - The positive and negative-sequence 

impedance networks are connected in parallel. Fig. 8.7 

• Double Line-to-Ground fault - All three impedance 

networks are connected in parallel. Fig. 8.9 
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The system shown in Fig. 8.1 and simplified to the sequence network in Fig. 8.5 and will 

be used throughout this section. 

 

 

Example 8.1 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , 

puZ o90175.02 ∠= , compute the fault current and 

voltages for a Three-phase fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the solution for current and voltage will be in per-unit. 

Solution 

The sequence networks are interconnected, and shown 

 

Note that for a three phase fault, there are no negative 

or zero-sequence voltages. 

020 == VV  

020 == II  

The current 1I  is the voltage drop across 1Z  

1

1
1

Z

V
I =  

175.0

01
1

j
I

o∠
=  

71.5j−=  

 

The phase current is converted from the sequence 

value using Eq. (7.8). 

 

pujI
o

a 9071.5071.50 −∠=+−=  

puajaI
o

b 15071.5)0()71.5(0 2 ∠=+−+=  

puajaI
o

c 3071.5)0()71.5(0 2 ∠=+−+=  

 

Calculating the voltage drop, the sequence voltages are 

 

020 == VV  

111 01 IZV o −∠=  

( ) 0.071.5175.011 =−−= jjV  

pu0.0=  

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z
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The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 0.00.00.00.0 =++=  

puaaVb 0.0)0.0()0.0(0.0 2 =++=  

puaaVc 0.0)0.0()0.0(0.0 2 =++=  

The per-unit value for the current and voltage 

would now be converted to actual values using 

Eq. (5.9) and Eq. (5.10) and knowing the base 

power and voltage for the given system.  See 

example 5.1 for a reference. 

 

The currents and voltages can be shown in phasor 

form. 

 

 

Example 8.2 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , 

puZ o90175.02 ∠= , compute the fault current and 

voltages for a Single line-to-ground fault.  Note that 

the sequence impedances are in per-unit.  This 

means that the results for current and voltage will 

be in per-unit. 

Solution 

The sequence networks are interconnected in series, 

as shown. 

 

Because the sequence currents are in series, and 

using ohms law. 

210 III ==  

)( 210

1
0

ZZZ

V
I

++
=  

 

)175.0175.0199.0(

01
0

jjj
I

o

++

∠
=  

 

puj 82.1−=  

 

The phase currents are converted from the sequence 

value using Eq. (7.8).  Substituting 210 III ==  into  

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Ic

Ia

Ib

VaVb

Vc



Symmetrical Components Page 26

Eq. (7.8) gives 

 

0000 3IIIIIa =++=  

000

2

0 =++= aIIaIIb   

00

2

00 =++= IaaIIIc  

Refer to Table 3.2: ( )01 2 =++ aa  

Note that 03IIa = .  This is the quantity that the relay “see’s” for a Single Line-to-

Ground fault. 

 

Substituting pujI 82.10 −=  

 

)82.1(303 jIIa −==  

puj 46.5−=  

 

Calculating the voltage drop, the sequence voltages are 

 

000 IZV −=  

111 IZVV −=  

222 IZV −=  

 

Substituting in the impedance and current from above 

 

362.0)82.1(199.00 −=−−= jjV  

( ) 681.082.1175.011 =−−= jjV  

( ) 319.082.1175.02 −=−−= jjV  

 

The phase voltages are converted from the sequence value using 

Eq. (7.6). 

 

0319.0681.0362.0 =−+−=aV  

puaaV
o

b 238022.1)319.0()681.0(362.0 2 ∠=−++−=  

puaaV
o

c 122022.1)319.0()681.0(362.0 2 ∠=−++−=  

 

The per-unit value for the current and voltage would now be converted to actual 

values using Eq. (5.9) and Eq. (5.10) and knowing the base power and voltage for 

the given system.  See example 5.1 for a reference. 

 

The currents and voltages can be shown in phasor form. 

 

Ia

Va

Vb

Vc
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Example 8.3 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , 

puZ o90175.02 ∠= , compute the fault current and 

voltages for a Line-to-Line fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the solution for current and voltage will be in per-

unit. 

Solution 

The sequence networks are interconnected, as shown. 

 

Because the sequence currents sum to one node, it 

follows that 

21 II −=  

The current 1I  is the voltage drop across 1Z  in series 

with 2Z  

21

1
1

ZZ

V
I

+
=  

175.0175.0

01
1

jj
I

o

+

∠
=  

puj 86.2−=  

 

pujI 86.22 +=  

00 =I  

 

The phase current is converted from the sequence value using Eq. (7.8). 

 

pujjIa 086.286.20 =+−=  

pujajaIb 95.4)86.2()86.2(0 2 −=+−+=  

pujajaIc 95.4)86.2()86.2(0 2 =+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.7, the sequence voltages are 

 

21 VV =  

222 IZV −=  

)86.2)(75.1( jj−=  

pu5.0=  

00 =V  

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z
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The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 0.15.05.00.0 =++=  

puaaVb 5.0)5.0()5.0(0.0 2 −=++=   

puaaVc 5.0)5.0()5.0(0.0 2 −=++=  

 

The per-unit value for the current and 

voltage would now be converted to actual 

values using Eq. (5.9) and Eq. (5.10) and 

knowing the base power and voltage for the 

given system.  See example 5.1 for a 

reference. 

 

The currents and voltages can be shown in phasor form. 

 

 

Example 8.4 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , puZ o90175.02 ∠= , compute the 

fault current and voltages for a Double Line-to-Ground fault.  Note that the 

sequence impedances are in per-unit.  This means that the solution for current and 

voltage will be in per-unit. 

Solution 

The sequence networks are interconnected, as 

shown in Fig. 8.9 

 

Because the sequence currents sum to one node, 

it follows that 

 

)( 201 III +−=  

 

The current 1I  is the voltage drop across 1Z  in 

series with the parallel combination of 0Z  and 

2Z  

 










+
+

=

20

20
1

1
1

ZZ

ZZ
Z

V
I  

 

Substituting in oV 011 ∠= , and 0Z , 1Z , and 2Z , 

then solving for 1I  

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Ic

Ib
VaVb

Vc
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pujI 73.31 −=  

1

20

2
0

)(
I

ZZ

Z
I

+
=  

75.1j+=  

1

20

0
2

)(
I

ZZ

Z
I

+
=  

99.1j+=  

The phase current is converted from the sequence value using Eq. (7.8).   

 

pujjjIa 099.173.375.1 =+−=  

pujajajI
o

b 1.15260.5)99.1()73.3(75.1 2 ∠=+−+=  

pujajajI
o

c 9.2760.5)99.1()73.3(75.1 2 ∠=+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.9, the sequence voltages are 

 

210 VVV ==  

000 IZV −=  

)199.0)(75.1( jj−=  

pu348.0=  

 

The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 044.1348.0348.0348.0 =++=  

puaaVb 0)348.0()348.0(348.0 2 =++=   

puaaVc 0)348.0()348.0(348.0 2 =++=  

Refer to Table 3.2: ( )01 2 =++ aa  

 

The per-unit value for the current and voltage would 

now be converted to actual values using Eq. (5.9) and 

Eq. (5.10) and knowing the base power and voltage 

for the given system.  See example 5.1 for a 

reference. 

 

The currents and voltages can be shown in phasor 

form. 

 

 

 

Ic
Ib

Va

IR
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9. Oscillograms and Phasors 
 

Attached are four faults that were inputted into a relay and then captured using the relay 

software.  

 

Three-phase fault.  Compare to example (8.1) 

 
Fig 9.1a 

   
 Fig 9.1b Fig 9.1c 
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Single Line-to-Ground fault.  Compare to example (8.2) 

 
Fig 9.2a 

 

   
 Fig 9.2b Fig 9.2c 
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Line-to-Line fault.  Compare to example (8.3) 

 
Fig 9.3a 

 

   
 Fig 9.3b Fig 9.3c 
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Double Line-to-Ground fault.  Compare to example (8.4) 

 
Fig 9.4a 

 

   
 Fig 9.4b Fig 9.4c 
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10. Addition Symmetrical Components considerations 
 

10.1 Symmetrical Components into a Relay 
 

Using a directional ground distance relay it will be demonstrated how sequential 

components are used in the line protection.  To determine the direction of a fault, a 

directional relay requires a reference against which the line current can be compared.  

This reference is known as the polarizing quantity.  Zero-sequence line current can be 

referenced to either zero-sequence current or zero-sequence voltage, or both may be used.  

The zero-sequence line current is obtained by summing the three-phase currents.  See 

Fig. 10.1 

 
 

From Eq. (7.9) 

 

( ) rcba IIIII ==++ 03  (10.1) 

 

This is known as the residual current or simply 03I . 

 

The zero-sequence voltage at or near the bus can be used for directional polarization.  

The polarizing zero-sequence voltage is obtained by adding an auxiliary potential 

transformer to the secondary voltage.  The auxiliary transformer is wired as a broken-

delta and the secondary inputted to the relay.  See Fig 10.2 
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03V

a
V

b
V

c
V

AV

BV

C
V

ΦA ΦB ΦC

 
 

 

From Eq. (7.7a) the zero-sequence voltage equals 

 

( )cba VVVV ++=
3

1
0  (10.2a) 

( )cba VVVV ++=03  (10.2a) 

 

 

Example 10.1 

Using the values obtained from example 8.2, calculate 03V . 

Solution 

0=aV  

puV
o

b 238022.1 ∠=  

puV
o

c 122022.1 ∠=  

 
oo

V 122022.1238022.103 0 ∠+∠+=  

puo18008.1 ∠=  

 

The zero-sequence voltage is puo18008.1 ∠ .  By connecting the value in the reverse 

gives 03V−  which equals puo008.1 ∠ .  Plotting this, we can show in phasor form what 

the relay see’s, Ia lagging 03V−  by the line angle.  In this case resistance is neglected, 

therefore Ia lags by 90
o
.  (see Fig 10.3). 
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Ia

Va

Vb

Vc

3V0 -3V0

 
Fig 10.3 

 
 
10.2 Symmetrical Components through a Transformer 
 

This section will look at current flow through a wye-delta transformer bank.  It will be 

shown in the next chapter that for faults that include ground that zero-sequence quantities 

will be generated.  It can be shown using symmetrical components that zero-sequence 

components cannot pass through delta-wye transformer banks.  If zero-sequence is 

flowing on the wye side, the currents will be reflected to the other side, but circulate 

within the delta.  Fig 10.4 The current on the left side is 

 

( )BAa II
n

I −=
1

 

 
Fig 10.4 
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From equation 7.2 we have 

 

210 AAAA IIII ++=  (10.3 a) 

210 BBBB IIII ++=  (10.3 b) 

 

Substituting on the right side of the equation 8.1 gives  

 

)( BA II − = )()()( 221100 BABABA IIIIII −+−+−  (10.4) 

 

The zero-sequence currents are in-phase, therefore equation 10.3 simplifies to  

 

)( BA II − = )()( 2211 BABA IIII −+−  (10.5) 

 

Where o

ABA III 303)( 111 ∠=−  and o

BBA III 303)( 222 −∠=−  

 

)303()303(
1

21

o

B

o

Aa II
n

I −∠+∠=  

)3030(
3

21

o

B

o

Aa II
n

I −∠+∠=  (10.6) 

In a balanced system where there is no negative or zero-sequence current then equation 

10.6 reduces to  

)30(
3 o

Aa I
n

I ∠=  (10.7) 

As can be seen the current will shift by 30
o 

when transferring through a transformer 

connected delta-wye.  The same can be prove when looking at the voltages. 

 

Now consider the connection in Fig 10.5. 

 

anI

bnI

cnI

 
Fig 10.5 

 

( )caA IInI −=  
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Substituting equation 7.2 and reducing gives 

 

)( CA II − = )()()( 221100 CACACA IIIIII −+−+−  (10.8) 

)303()303( 21

o

C

o

Aa IInI ∠+−∠=  

)3030(3 21

o

C

o

Aa IInI ∠+−∠=  (10.9) 

 

As seen from the prior example equation 10.9 will reduce to 

 

)30(3 o

Aa InI −∠=  

 

if there is no negative or zero-sequence current, which is the case for a balanced system. 

 

By inspection of the equations above for ANSI standard connected delta-wye transformer 

banks if the positive-sequence current on one side leads the positive current on the other 

side by 30
o
, the negative-sequence current correspondingly will lag by 30

o
.  Similarly if 

the positive-sequence current lags in passing through the bank, the negative-sequence 

quantities will lead 30
o
. 

 

The direction of the phase shifts between the delta-connected winding and the wye-

connected winding depends on the winding connections of the transformer. 

 

The winding configurations of a transformer will determine whether or not zero-sequence 

currents can be transformed between windings.  Because zero-sequence currents do not 

add up to zero at a neutral point, they cannot flow in a neutral without a neutral conductor 

or a ground connection.  If the neutral has a neutral conductor or if it is grounded, the 

zero-sequence currents from the phases will add together to equal 3I0 at the neutral point 

and then flow through the neutral conductor or ground to make a complete path. 

 

Following are some different transformer winding configurations and their effect on zero-

sequence currents 

 

1. Transformers with at least two grounded wye windings 
 

When a transformer has at least two grounded-wye windings, zero-sequence 

current can be transformed between the grounded-wye windings.  The I0 currents 

will add up to 3I0 in the neutral and return through ground or the neutral 

conductor.  The I0 currents will be transformed into the secondary windings and 

flow in the secondary circuit.  Any impedance between the transformer neutral 

points and ground must be represented in the zero-sequence network as three 

times its value to correctly account for the zero-sequence voltage drop across it. 

 

Below on the left is a three-phase diagram of a grounded-wye, grounded-wye 

transformer connection with its zero-sequence network model on the right.  

Notice the resistance in the neutral of the secondary winding is modeled by 3R in 

the zero-sequence network model. 
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2. Transformers with a grounded-wye winding and a delta winding 

 

When a transformer has a grounded-wye winding and a delta winding, zero-

sequence currents will be able to flow through the grounded-wye winding of the 

transformer.  The zero-sequence currents will be transformed into the delta 

winding where they will circulate in the delta without leaving the terminals of the 

transformer.  Because the zero-sequence current in each phase of the delta 

winding is equal and in phase, current does not need to enter or exit the delta 

winding. Below on the left is a three-phase diagram of a grounded-wye-delta 

transformer connection with its zero-sequence network model on the right.   

 

 

 

 

Reference Bus

Z0 3RP S

I0

I0

I0

3I0
3I0

R

I0

I0

I0

P S
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3. Autotransformers with a grounded neutral 

 

Autotransformers can transform zero-sequence currents between the primary and 

secondary windings if the neutral is grounded.  Zero-sequence current will flow 

through both windings and the neutral ground connection. Below on the left is a 

three-phase diagram of a grounded neutral autotransformer with its zero-sequence 

network model on the right.   

 

 

 

 

4. Autotransformers with a delta tertiary 

 

If an autotransformer has a delta tertiary, zero-sequence current can flow through 

either the primary or secondary winding even if the other winding is open 

circuited in the same manner that zero-sequence current can flow in a grounded-

wye-delta transformer.  If the ground is removed from the neutral, zero-sequence 

current can still flow between the primary and secondary windings, although there 

will not be any transformation of currents between the primary and secondary 

windings—only between the partial winding between the primary and secondary 

terminals and the delta tertiary.  This is not a normal condition though, so it will 

not be analyzed here. 

 

Note that when modeling three-winding transformers the impedance needs to be 

broken into the impedance of the individual windings. 
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5. Other transformers 

 

Other transformer configurations, such as ungrounded wye-ungrounded wye, 

grounded wye-ungrounded wye, ungrounded wye-delta, and delta-delta will not 

allow zero-sequence currents to flow and will have an open path in the zero-

sequence network model.  Some of these configurations are shown below with 

their zero-sequence network models. 

 

 

 

 

 

 

 

 

 

In the preceding transformer connection diagrams the values of I0 at the terminals of the 

primary and secondary windings will be equal on a per-unit basis.  They will also have 

the same per-unit values within the wye and delta windings; however, the per-unit values 

of current within the windings of an autotransformer are somewhat more difficult to 

determine because part of the winding carries both primary and secondary currents.  If 

the magnitude of current within the winding of an autotransformer needs to be known, it 

can be determined by equating the ampere turns of the primary winding to those of the 

secondary winding and solving.  If a tertiary is involved, it will need to be included in the 

equation also. 
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Magnitude of transformer zero-sequence impedance 

 

The zero-sequence impedance of a single-phase transformer is equal to the positive-

sequence impedance.  When three single-phase units are connected as a three-phase unit 

in a configuration that will transform zero-sequence currents (grounded wye-grounded 

wye, grounded wye-delta, etc.), the zero-sequence impedance of the three-phase unit will 

normally be equal to the positive-sequence impedance. 

 

In transformers built as three-phase units, i.e. with a three-phase core, in a configuration 

capable of transforming zero-sequence currents, the zero-sequence impedance will be the 

same as the positive-sequence impedance if the transformer core is of the shell type.  If 

the core is of the core type, the zero-sequence impedance will be different than the 

positive-sequence impedance.  This is because the zero-sequence excitation flux does not 

sum to zero where the three legs of the core come together and is forced to travel outside 

of the iron core, through the oil or the transformer tank where the magnetic permeability 

is much less than the iron core.  This results in a low impedance (high conductance) in 

the magnetizing branch of the transformer model.  The larger zero-sequence magnetizing 

current results in a lower apparent zero-sequence impedance.  Using a lower value of 

zero-sequence impedance in the transformer zero-sequence model is sufficient for most 

fault studies, but to obtain a highly accurate zero-sequence model of a three-phase core-

form transformer, the magnetizing branch can not be neglected.  

 

11. System Modeling  
 

11.1 System Modeling: Transmission Lines  
 
Transmission lines are represented on a one-line diagram as a simple line connecting 

busses or other circuit elements such as generators, transformers etc. 

 

Transmission lines are also represented by a simple line on impedance diagrams, but the 

diagram will include the impedance of the line, in either ohm or per-unit values.  

Sometimes the resistive element of the impedance is omitted because it is small 

compared to the reactive element. 

 

Here is an example of how a transmission line would be represented on an impedance 

diagram with impedances shown in ohms: 

 

 
 

In a balanced three-phase system the impedance of the lines and loads are the same, and 

the source voltages are equal in magnitude.  We can calculate the single-phase current, 

but must take into account the voltage drop across the mutual impedance caused by the 

other phase currents.  From Fig 11.1, the voltage drop in A-phase is 
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Zs

Zs

Zs

Zm

Zm

Zm

AΦ

BΦ

CΦ

 
Fig 11.1 

 

CmBmASa IZIZIZV ++=  (11.1a) 

For the case of a balanced three-phase current ACB III −=+ )( .  Thefore: 

 

( ) AmSa IZZV −=  (11.1b) 

 

Dividing by IA  shows  the positive-sequence impedance of the line equals the self 

impedance minus the mutual impedance. 

 

( )mS

A

A
a ZZ

I

V
Z −==

0

0
1  (11.2) 

 

The negative-sequence current encounters a negative-sequence impedance which is equal 

to the positive-sequence impedance 

 

( )mS

A

A
a ZZ

I

V
Z −==2  (11.3) 

 

For the zero-sequence impedance, because Ia0, Ib0 and Ic0 are in phase with each other,  

 

000 CBA III ==  

 

then zero-sequence voltage drop is given in equation 11.4 

 

( ) 000000 AmmASCmBmASa IZZIZIZIZIZV ++=++=  (11.4a) 

( ) 00 2 AmSa IZZV +=  (11.4b) 

 

Dividing each side by IA0 give the zero-sequence impedance: 

 

( )mS

A

A
a ZZ

I

V
Z −==

0

0
0  (11.5) 

The result gives the zero-sequence impedance as function of the self and mutual 

impedance of the line.  The zero-sequence impedance is always larger than the positive-

sequence because we are adding two times the mutual impedance to the self impedance, 

instead of subtracting the mutual impedance from the self impedance. 
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11.2 System Modeling: Subtransient, Transient, and Synchronous Reactance of 
Synchronous Generators  
 

A synchronous generator is modeled by an internal voltage source in series with an 

internal impedance. 

Below is a typical one-line diagram symbol for a generator. 

 

 
 

The circle represents the internal voltage source. The symbol to the left of the circle 

indicates that the three phases of the generator are wye-connected and grounded through 

a reactance. The symbol for a synchronous motor is the same as a synchronous generator. 

 

 

A typical impedance diagram representation of a synchronous generator is shown in Fig. 

11.2. 

Xg Rg

Vt
Eg

+

-

 
Fig. 11.2 

 

When modeling the impedance of a synchronous generator (or motor), the resistive 

component is usually omitted because it is small compared to the reactive component. 

 

When a fault is applied to a power system supplied by a synchronous generator, the initial 

current supplied by the generator will start at a larger value, and over a period of several 

cycles it will decrease from its initial value to a steady state value. 

 

The initial value of current is called the subtransient current or the initial symmetrical rms 

current. Subtransient current decreases rapidly during the first few cycles after a fault is 

initiated, but its value is defined as the maximum value that occurs at fault inception. 

 

After the first few cycles of subtransient current, the current will continue to decrease for 

several cycles, but at a slower rate.  This current is called the transient current.  Although, 

like the subtransient current, it is continually changing, the transient current is defined as 

its maximum value, which occurs after the first few cycles of subtransient current. 

 

After several cycles of transient current, the current will reach a final steady state value.  

This is called the steady state current or the synchronous current.  
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The reason why the current supplied by the synchronous generator is changing after a 

fault is because the increased current through the armature of the generator creates a flux 

that counteracts the flux produced by the rotor.  This results in a reduced flux through the 

armature and therefore a reduced generated voltage.  However, because the decrease in 

flux takes time, the generator voltage will be initially higher and decrease over time. 

 

We account for the changing generator voltage in our model by using different values of 

reactance in series with the internal generator voltage. 

 

We use three values of reactance to model the generator during the period after fault 

inception: the subtransient reactance (Xd’’) is used during the initial few cycles; the 

transient reactance (Xd’) is used for the period following the initial few cycles until a 

steady state value is reached; the synchronous reactance (Xd) is used for the steady state 

period. 

 

The impedance diagrams for a synchronous generator (or motor) during the subtransient, 

transient, and synchronous periods are shown in Fig. 11.3. 

 

     
Fig. 11.3 

 

The reactance of synchronous motors are the same as for synchronous generators.  If the 

line to a synchronous motor develops a three-phase fault, the motor will no longer receive 

electrical energy from the system, but its field remains energized and the inertia of its 

rotor and connected load will keep the rotor turning for some time.  The motor is then 

acting like a generator and contributes current to the fault 
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11.3 System Modeling: Transformers 
 
Transformers are represented in one-line diagrams by several symbols.  Below 
are some typical ones. 
 
 

      
 
The first is a two-winding transformer connected delta- grounded wye, and the 
second is a three-winding transformer connected grounded wye-delta-grounded 
wye. 
 
An impedance model of a practical two-winding transformer is shown in Fig. 11.4. 
 

 
Fig. 11.4 

 
In the model, a:1 represents the winding ratio of the ideal transformer shown by 
the two coupled coils, BL in parallel with G represents the magnetizing 
susceptance and conductance which make up the magnetizing branch, IE 
represents the excitation current, r1 and x1 represent the leakage impedance of 
winding 1,r2 and x2 represent the leakage impedance of winding 2, V1 and I1 
represents the primary voltage and current respectively, and V2 and I2 represent 
the secondary voltage and current respectively. 
Because normal fault and load currents are very much larger than the 
magnetizing current, IE, we can omit the magnetizing branch from our model.  
We can also omit the ideal transformer if we refer the leakage impedances to 
either the primary- or secondary-side of the transformer.  The leakage 
impedance of one side of the transformer can be referred to the other side of the 
transformer by multiplying it by the square of the turns ratio.  Below is the 
simplified impedance diagram with the magnetizing branch removed and the 
leakage impedance of the secondary winding referred to the primary side of the 
transformer. 
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Our impedance model can be further simplified by letting 
2211 rarR +=  

2211 xaxX +=  

 
 

When using this simplified model, any impedances and voltages connected to the 

secondary side of the circuit must now be referred to the primary side. 

 

As an example, the following transformer model will be converted to the simplified 

impedance model. The magnetizing branch and the leakage resistances have been omitted 

to simplify the problem. 

 

 
 

The secondary-side impedance is multiplied by the square of the turns ratio before being 

transferred to the primary side. 

 j6.0 * 8.332 = j416.3Ω 

 



Symmetrical Components Page 48

This is added to the high side to get an impedance of j50Ω + j416.3Ω = j466.3Ω 

 

The simplified model is shown in Fig. 11.5 

 
Fig. 11.5 

 

11.4 Some additional points – DC Offset 
 
In a transmission network, the sudden occurrence of a short circuit will result in a 

sinusoidal current that is initially larger and decreases due to the changing air gap flux in 

the synchronous generators.  We’ve seen that this is modeled by subtransient, transient, 

and synchronous reactances in our generator model. In a circuit containing resistance and 

inductance (RL circuit), such as in a transmission network, the sudden occurrence of a 

short circuit will also result in DC offset in the current that occurs after a fault is applied.  

Consider the RL circuit below: 

 

 
 

 

 

 

 

If the switch is closed at time t=0, the voltage around the circuit is 

Vmaxsin(ωt+φ) = Ri + Ldi/dt 

 

Solving this differential equation for the instantaneous current, i, gives 

i = Vmax [sin(ωt+φ-θ) – e-Rt/Lsin(φ-θ)] / │Z│ 

 

Where │Z│= √(R2 + (ωL)2   and   θ = tan-1(ωL/R) 
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The important thing to note from the solution is that there is a sinusoidal component that 

represents the steady-state solution for the current (Vmax sin(ωt+φ-θ) / │Z│) and a 

exponentially decaying component (-Vmax e-Rt/Lsin(φ-θ) / │Z│). 

 

Some points to note about the exponentially decaying—or DC offset—component: 

 

The initial value of the DC offset is determined by what point in the cycle the voltage 

waveform is at when the fault occurs (the value of φ) and will range from 0 up to the 

value of the steady state component. 

 

The dc component will decrease with a time constant of L/R.  The larger the ratio of 

inductance to resistance in the circuit, the larger the time constant, and the slower the dc 

component will decay. 

 

Three time constants after the switch is closed, the dc offset will have decayed to 5% of 

its initial value. 

 

DC offset is an important consideration in sizing breakers. 

 

Most modern microprocessor-based relays are immune to DC offset because after the 

analog signals are converted to digital signals, they can be mathematically filtered to 

remove the DC component.  Therefore the DC component doesn’t need to be considered 

in the relay settings.  

 

Some electromechanical relays are immune to DC offset, and some aren’t.  Clapper and 

plunger type units are generally not immune, and DC offset will have to be allowed for in 

the relay settings (one guideline is to set pickup at 160% of the desired ac pickup 

current).  Cylinder type units, used in distance relays, are immune to DC offset. 

 

The different values of the AC fault current should be considered in the relay settings.  

The subtransient fault current should be used in setting instantaneous current elements, 

whereas the synchronous fault current should be used in current elements with long time 

delays. 
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Problems 
Problem 1 

 

BPA’s system model uses a three-phase power base of 100MVA.  The line-to-line 

voltage base is 525kV for the 500 system, 230kV for the 230 system, and 115kV for the 

115 system. 

 

a) An undervoltage relay on the 115 system is set to pick up at 0.85 pu (per unit) of the 

phase-to-ground voltage.  What is the phase-to-ground voltage that the undervoltage relay 

will pick up at? 

 

b) A three-phase fault on the 500 system results in a fault current of 2750A.  What is the 

per unit value of this current? 

 

c) What is the base impedance for the 500 system? 

 

d) What is the base impedance for the 230 system? 

 

e) What is the base impedance for the 115 system? 

 

 

Problem 2 

 

From our example 5.2, the percent impedance of a 525/241.5kV autotransformer is 

10.14% based on its nameplate value of 900MVA.  Suppose we need to model this 

transformer in BPA’s ASPEN model which uses a 100MVA power base.  What would 

the per-unit impedance be? 

 

 

Problem 3 

 

From our example in 5.2, convert the per-unit impedance to a per-unit value in a three-

phase power base of 100MVA.   

a) First convert the per unit impedance to an actual impedance (in ohms) at 525kV and 

then convert the actual impedance to a per-unit impedance on the new base. 

b) Repeat, this time converting the per unit impedance to an actual impedance (in ohms) 

at 241.5kV and then converting the actual impedance to a per-unit impedance on the new 

base 

 

 

Problem 4 

 

Convert the per-unit impedance of the transformer in the example to a per-unit value in 

the BPA model with a three-phase power base of 100MVA by first converting the per 

unit impedance to an actual impedance (in ohms) at 230 kV and then converting the 

actual impedance to a per-unit impedance on the new base. 
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Problem 5 

 

V2

j6.0O

8.33:1

V1 = 66.4kV @ 0°

I2I1

j50.0O

50O

 
Using the transformer model convert from ohms to per-unit.   

The voltage base for the primary side will be 115kV, and the voltage base for the 

secondary side will be 13.8kV.  The power base for both sides is 100MVA.  

 

 

Problem 6 

 

Below is a one line diagram of a partial power system. 

The two generators are identical, each rated 13.8kV and 50MVA with a subtransient 

reactance of Xd” = 15%.  The two generators are tied to a common bus which is 

connected to a transmission line with a delta-grounded wye transformer rated at 

150MVA, 13.8kV/115kV and an impedance of 9.7%.  The transmission line is 30 miles 

long and has an impedance of 5.43 + j22.5Ω.  At the end of the transmission line is a 

grounded wye-grounded wye transformer, rated 225MVA, 115kV/230kV with an 

impedance of 7.4% that connects the line to a 230kV bus.  The remaining power system 

connected to the 230kV bus is not shown. 

 

From the above information, draw the impedance diagram with impedances shown in 

their per-unit values.  Use voltage bases of 13.8kV, 115kV, and 230kV for the 

corresponding parts of the system, and use a power base of 100MVA for the whole 

system. 

 

Problem 7 

 

From the impedance diagram, determine the per-unit and ampere values of subtransient 

current in each generator and at the fault for a three-phase fault applied on the 230kV bus 

with both generators operating at 1.0pu voltage.  
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The generators can be combined into their Thevenin equivalent as shown below. 

 

1.0pu

+

-

j0.15

j0.0647 j0.1701 j0.03289

3-phase
fault

0.04106

IF

 
 

 

Problem 8 

 

From the one line diagram of a partial power system that we used in problem 6. 

 

From the above information, we drew the positive-sequence impedance diagram using 

subtransient impedances for the generators and with impedances shown in their per-unit 

values.  Normally the positive-sequence network is drawn with the reference bus (which 

is the neutral point) shown at the top instead of the bottom.   

 

The negative-sequence reactance of the generators is equal to their positive-sequence 

subtransient reactance.  Draw the positive and negative-sequence networks for the power 

system with impedances shown in their per-unit values. 

 

 

 

Problem 9 

 

Each generator has a zero-sequence reactance of 5% and is grounded through a reactance 

of 2Ω.  The transmission line has a zero-sequence impedance of 12.9 + j75.9Ω.  The 

grounded wye-grounded wye transformer has a zero-sequence reactance of 4.8%. 

Draw the zero-sequence impedance diagram. 
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Solutions 
Problem 1 

 

a) V BL-G = V BL-L / √3 

V BL-G = 115kV / √3 = 66.4kV 

 

Z PU = ZA / ZB 

ZA = ZPU*ZB 

ZA = 0.85*66.4kV 

ZA = 56.4kV 

 

b) IB = PB3Φ / √3*VBL-L 

IB = 100x10
6
 / √3*525x10

3
 

IB = 110.0 A 

 

IPU = IA / IB 

IPU = 2750 A / 110 A 

IPU = 25.0 pu  

 

c) ZB = VBL-L2 / PB3Φ 

ZB = (525x10
3
)

2
 / 100x10

6
 

ZB = 2756.25Ω 

 

 

d) ZB = VBL-L2 / PB3Φ 

ZB = (230x10
3
)

2
 / 100x10

6
 

ZB = 529.0Ω 

 

e) ZB = VBL-L2 / PB3Φ 

ZB = (115x10
3
)

2
/ 100x10

6
 

ZB = 132.25Ω 

 

 

 

Problem 2 

 

Zpu new = Zpu old *(VBL-L old / VBL-L new)
2
 * (PB3Φ new / PB3Φ old) 

 

Zpu old = 10.14 / 100 = 0.1014 

VBL-L old = 525kV,      PB3Φ old = 900MVA 

VBL-L new = 525kV,     PB3Φ new =100MVA 

 

Zpu new = 0.1014 *(525kV / 525kV)
2
 * (100MVA / 900MVA) 

Zpu new = 0.1014 *1* (100 / 900) 

Zpu new = 0.01127 pu 
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Problem 3 

 

ZPU = ZA / ZB 

ZA = ZPU * ZB 

 

ZB = VBL-L 
2
 / P B3Φ 

 

a) Using the high-side voltage: 

Z B old = 525,000
2
 / 900x10

6
 

Z B old = 306.25Ω 

 

ZA = 0.1014 * 306.25 

ZA = 31.05Ω 

 

Converting to the 100MVA base: 

ZB new = V BL-L new 
2
 / PB3Φ new 

ZB new = 525,000
2
 / 100x10

6
 

ZB new = 2756.25Ω 

 

ZPU new = ZA / ZB new 

ZPU new = 31.05Ω / 2756.25Ω 

ZPU new = 0.01127 pu 

 

b) Using the low-side voltage: 

ZB old = 241,500
2
 / 900x10

6
 

ZB old = 64.80Ω 

 

ZA = 0.1014 * 64.80 

ZA = 6.57Ω 

 

Converting to the 100MVA base: 

ZB new = V BL-L new 
2
 / P B3Φ new 

ZB new = 230,000
2
 / 100x10

6
 

ZB new = 529.0Ω 

 

ZPU new = ZA / ZB new 

ZPU new = 6.57Ω / 529.0Ω 

ZPU new = 0.01242 pu 
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Problem 4 

 

Repeat problem 3 assuming the transformer has a tap with a ratio of 525 /230 kV and 

using the low side voltage. 

 

 

 

Problem 5 

 

Answer: 

 

The base impedance of the secondary side is ZB = V BL-L2 / P B3Φ 

 

ZB = (13.8*10
3
)2 / 100*10

6
 

ZB = 1.904Ω 

 

The per-unit impedance of the secondary leakage reactance is  

X2 = j6.0 / 1.094 = j3.151 pu 

The per-unit value of the load resistance is RL = 50 / 1.904 = 26.26 pu 

 

 

The base impedance of the primary side is ZB = V BL-L2 / P B3Φ 

 

ZB = (115*10
3
)2 / 100*10

6
 

ZB = 132.25Ω 

 

The per-unit impedance of the primary leakage reactance is  

X1 = j50.0 / 132.25 = j0.3781 pu 

 

The total per-unit impedance of our model can be obtained by simply adding together the 

per-unit values of the primary and secondary impedances. 

 

X = X1 + X2 = j0.3781 + j3.151 = j3.529 pu 

 

 

V2 pu

j3.529 pu

I1 pu

V1 = 1.0 @ 0° pu 26.26 pu
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Problem 6 

 

Answer: 

 

Converting the impedances to per-unit on a 100MVA base using  

Zpu new = Zpu old *(VBL-L old / VBL-L new)
2
 * (PB3Φ new / PB3Φ old) 

 

Each generator subtransient reactance is Xd” = j0.15 * (13.8kV / 13.8kV)
2
 * (100MVA / 

50MVA) 

Xd” = j0.30 pu 

 

The 13.8kV / 115kV transformer impedance is X = 0.097 * (13.8kV / 13.8kV)
2
 * 

(100MVA / 150MVA) 

X = j0.06467 pu 

 

The base impedance for the 115kV line is ZB = V BL-L2 / P B3Φ 

ZB = (115x10
3
)
2 

/ 100x10
6
 = 132.25Ω 

The per-unit impedance of the 115kV transmission line is (5.43+j22.5) / 132.25 = 

0.04106+j0.1701 pu 

 

The 115kV / 230kV transformer impedance is X = 0.074 * (115kV / 115kV)
2
 * 

(100MVA / 225MVA) 

X = j0.03289 pu 

 

The impedance diagram with the per-unit values of the impedances is shown below. 

1.0pu

+

-

j0.30

j0.0647 j0.1701 j0.03289

1.0pu

+

-

3-phase
fault

j0.30

0.04106
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Problem 7 

 

Answer: 

 

The fault current is  

IF = 1.0 / (0.04106 + j0.15 + j0.0647 + j0.1701 + j0.03289) 

IF = 1.0 / (0.04106 + j0.41769) 

IF = 2.382 @ -84.4° pu 

 

At the generators, the total fault current is I FGT = 2.382 * IB 

IB = P B3Φ / √3*V BL-L = 100x10
6
 / √3*13.8x10

3
 = 4184 A 

IFGT = 2.382 * 4184 = 9966 A 

Each generator contributes half of this current 

IFG = 9966 / 2 = 4983 A 

 

At the fault, the total fault current is IF = 2.382 * IB 

IB = P B3Φ / √3*V BL-L = 100x10
6
 / √3*230x10

3
 = 251.0 A 

IF = 2.382 * 251.0 = 597.9 A 

 

 

 

Problem 8 

 

Ea = 1.0pu

+

-

j0.15

j0.0647 j0.1701 j0.032890.04106

Reference Bus

VA1

+

-

 

j0.15

j0.0647 j0.1701 j0.032890.04106

Reference Bus

VA2

+

-
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Problem 9 

 

Answer: 

 

The zero-sequence reactance of each generator is 5%, or 0.05pu on a 13.8kV, 50MVA 

base.  Converting this to a 100MVA base gives 

 

 Zpu new = j0.05 * (100 / 50) = j0.10 pu 

 

Each generator is grounded through a reactance of 2Ω.  The base impedance at 13.8kV, 

100MVA is ZB = (13.8x103)2 /  (100x106) = 1.9044Ω.  The per-unit impedance of each 

grounding reactor is Zpu = j2.0 / 1.9044 = j1.05pu.  The grounding reactances will need 

to be multiplied by three for the zero-sequence network, giving a value of 3 * j1.05 = 

j3.15pu. 

 

Because a value is not given for the zero-sequence impedance of the delta-grounded wye 

transformer, it can be assumed that the zero-sequence impedance is the same as the 

positive-sequence impedance. 

 

The zero-sequence impedance of the transmission line is 12.9 + j75.9Ω.  The base 

impedance at 115kV, 100MVA is ZB = (115x103)
2
 /  (100x10

6
) = 132.25Ω.  Converting 

the zero-sequence line impedance to a per-unit value gives ZL0 = (12.9 + j75.9) / 132.25 = 

0.0975 + j0.574pu. 

 

The zero-sequence impedance of the grounded wye-grounded wye transformer is 4.8%, 

or j0.048pu on a base of 115kV, 225MVA.  Converting to a 115kV, 100MVA base gives 

 

Zpu new = j0.048 * (100 / 225) = j0.0213 pu 

 

The zero-sequence network is shown below.  Notice the interruption in the path caused 

by the delta-wye transformer. 

 

j0.10

j0.0647 j0.574 j0.0213

Reference Bus

j0.10

0.0975

j3.15 j3.15

VA0

+

-

 

Here is a simplified version of the zero-sequence network with the two generator 

branches combined into an equivalent branch. 
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j0.0647 j0.574 j0.0213

Reference Bus

j0.05

0.0975

j1.575

VA0

+

-

 

 



Symmetrical Components Page 60

Appendix 
Three Phase System 

LLL IVS 3= , Θ= cos3 LLL IVP , Θ= sin3 LLL IVQ  
 

Per-Unit 
First step in using per-unit is to select the base(s) for the system.  

Sbase = Power base, in VA 

Vbase = voltage base in V 

Sbase = 100 MVA 

Vbase = Nominal voltage rated line-

to-line 

 

valuebase

valueactual
unitper

_

_
=−  

100

_ valuepercent
unitper =−  

 

basebasebase ZI

IZ

V

V
=  pupupu ZIV =  

 

amperes
kV

kVA
I

base

base

base
3

=  Aamperes
V

kVA
I

base

base

base 251
)230(3

100
==  

 Ex: 230kV base, 100MVA base   

PUZ

MVA
MVA

Fault

Base

Fault =  
PUZ

I
I

Fault

Base

CurrentFault =_  

 

 

ohms
kVA

xkV
Z

base

base
base

10002

=  (in kVA)  ohms
MVA

kV
Z

base

base
base

2

=  (in MVA) 

 

100

2

base

base

V
Z =  (for a 100 MVA base) 

 

base

pu
Z

Z
Z

)(Ω
=  )(

2
Ω⋅








= Z

kV

MVA
Z

base

base

pu  (in MVA) 

 

 ( )
2

100
%

base

base

kV

ZMVA
Z

Ω⋅
=  (percent in MVA) 

2









⋅=

old

base

new

baseold

ohm

new

ohm
kV

kV
ZZ  (new impedance reflective through a transformer) 

ohmsZ new

ohm 8.1
230

115
2.7

2

=







⋅=   

Ex: 115kV line impedance on the 115kV side of a 230/115kV transformer
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Symmetrical Components 
 

a Operator 
 

o
a 1201∠=   

o
a 24012 ∠=   

13 =a  

 

210 VVVVa ++=  

21

2

0 aVVaVVb ++=  

2

2

10 VaaVVVc ++=  

( )cba VVVV ++=
3

1
0  

( )cba VaaVVV
2

1
3

1
++=  

( )cba aVVaVV ++= 2

2
3

1
 

 

210 IIIIa ++=  

21

2

0 aIIaIIb ++=  

2

2

10 IaaIIIc ++=  

 

( )cba IIII ++=
3

1
0  

( )cba IaaIII
2

1
3

1
++=  

( )cba aIIaII ++= 2

2
3

1
 

( )cba IIII ++=03  (residual currents or sum of the three phase currents) 
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Three-Phase fault 

puZ

MVA
MVA

Fault

Base
Fault =  

 

1

1
Z

E
I a=  

002 == II  










⋅








==

kV

kVA

Z
II A

3

1001

1

1  

AB IaI 2=  

AB aII =  

 

111 1 ZIE −=  

002 == EE  

 

 

 

0ne-line to ground fault 

puZZZ

MVA
MVA Base

Fault

021

3

++

⋅
=  

 

021

210

1

ZZZ
III

++
===  

0210 3IIIII A =++=  

0== cB II  

 

111 1 ZIE −=  
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000 ZIE −=  
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2Z

1Z

2I
+

-

2V
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+

-

0V
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+

-

1Vo
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2Z

1Z

2I

+

-
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+

-
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+

-
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01∠
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Line-Line fault, or Phase-to-phase fault 

121

21
2

11

ZZZ
II =

+
=−=  

00 =I  

 

0=AI  

11

2

21

2

21

2

0 aIIaaIIaaIIaIIB +=+=++=  

( )
21

2

ZZ

Eaa
IB

+

−
=  

BC II −=  when 21 ZZ =  

 

111 1 ZIE −=  

1222 EZIE =−=  

00 =E  

 

 

 

Double Line-Line fault, or Two phase to Ground fault 

( )
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1

1

1

ZZ

ZZ
Z

I
+

+
=  

102 III −=+  

20

10
2

ZZ
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I

+
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0

ZZ

IZ
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+
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-
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-
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-
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