
VidyaJyothi Institute of Technology 
Approved by AICTE, New Delhi, Acredited by NAAC, Permanently Afiliated to JNTUH, Hyderabad) 

An Autonomous Institution 

Aziznagar Gate, ChilkurBalaji Road, 
Hyderabad 500075, Telangana, India 

www.vjit.ac.in 
Department of Information Technology 

Course file 

Regulations 
Batch 

019-&013 
Academic year 

900-0a) 
Programn 

:JAVA PRoGRMMIG 
Course name 

Year/ Sem 

Course Code 
: A3Gs 

Pre-Requisites 
Ppe-4D 

Course Coordinator 
:D. Tavauthi 



Index 



INDEX 

S.NO. 
ITEM DESCRIPTION 

Course Information Sheet 

2 Syllabus 
3 Text Books, Reference Books, Web/Internet Resources 

4 Time table 

Program Educational Objectives(PEOS) and Program Outcomes(POs) 
6 Program Specific Outcomes(PSOs) 

Course Outcomes(COs) 

8 Mapping of Course Outcomes, POs and PSOs 

9 Course Schedule 

10 Lecture Plan/Teaching Plan 

11 Unit wise Date of Completion and Remarks 

12 Assignment Questions 

13 Unit wise Question Bank 

14 Mid Question Papers 

15 End Exam papers 

16 Content Beyond Syllabus 

17 Unit wise PPTs and lecture notes 

18 CO Attainment - Direct and Indirect 

19 Course end survey form 



Syllabus 



JAVA PROGRAMMING 

I Year B.Tech. IT II Sem 
LT PC 

3 0 0 0 

Course Outcomes: 
At the end of the course student would be able to 

I. Understand OOP concepts to apply basic Java constructs. 2. Analyze different forms of inheritance and usage of Exception Handling 3. Understand the different kinds of file 1/0,Multithreading in complex Java 
programs, and usage of Container classes 

4. Contrast different GUI layouts and design GUI applications 5. Construct a full-fledged Java GUI application, and Applet with database 
connectivity 

UNIT - I 

Java Basies: 
History of Java, Java buzzwords, data types, variables, scope and life time of variables, 

arrays, operators, expressions, control statements, type conversion and casting, simple 
java program 
Fundamentals of Object Oriented Programming: 
Object-Oriented Paradigm, Basic Concepts of Object Oriented Programming, 
Applications of OOP. Concepts of classes, objects, constructors, methods, access 
control, this keyword, garbage collection, overloading methods and constructors, 

parameter passing, recursion, static keyword, nested and inner classes, Strings, Object 
class. 

UNIT - II 

Inheritance & Polymorphism: 
Introduction, Forms of Inheritance specialization, specification, construction, 
extension, limitation, combination, Member access rules, super keyword, polymorphism-
method overriding, abstract classes, final keyword. 
Interfaces and Packages: 
Introduction to Interfaces, differences between abstract classes and interfaces, multiple 
inheritance through interfaces, Creating and accessing a package, Understanding 
CLASSPATH, importing packages. 
Exception handling: 
Concepts of exception handling, exception hierarchy, built in exceptions, usage of try, 

catch, finally, throw, and throws, creating own exception sub classes. 

UNIT III 

Files: 
Introduction to I/O Streams: Byte Streams, Character Streams. File 1/O. 
Multi threading: Differences belween multi threading and multitasking, thread life cycle, 



creating threads, thread priorities, synchronizing threads, inter thread communicanon. Java.uul package- Collection Interfaces: List, Map, Set. The Collection classes LinkedList, HashMap, TrecSet, StringTokenizer, Date, Random, Scanne 
UNIT - IV 

AWT: 
Class hierarchy, Component, Container, Panel, Window, Frame, GraphicS. AWT controls: 
Labels, Button, Serollbar, Text Components, Checkbox, CheckboxGroup, Choice, LIst, Panes ScrollPane, Dialog and Menu Bar. 
Event Handling: 
Events, Event sources, Even classes, Event Listeners, Delegation event model, handling 
mouse and keyboard cvents, Adapterclasses. 

UNIT VV 

Layout Manager: 
Border, Grid, Flow, Card and Gridbag. 
Applets: 

Concepts of Applets, life cycle of an applet, creating applets, passing parameters 

toapplets. 
JDBC Connectivity: 
JDBC Type 1 to 4 Drivers, connection establishment, Query Execution. 

Text Books: 
1. Java- the complete reference, Seventh edition, Herbert Schildt, Tata McGraw 

Hill 
2. Database Programming with JDBC & JAVA, Second Edition, George Reese, 

O'Reilly Media. 

Reference Books: 

1. Programming in JAVA, Second Edition, OXFORID Higher Education. 

2. Thinking in Java Fourth Edition, Bruce Eckel 

3 Introduction to Java programming, Y, Daniel Liang, Pearson Education. 

4. Understanding OOP with Java, updated edition, T. Budd, Pearson Education. 



Program Educational1 

Objectives & 

Program Outcomes 



Vidya Jyothi Institute of Technology 
(Afiliated to JNTUH) 

AzimagarGate,C. B.Post. Hyderabad-500 075 

DEPARTMENT OF INFORMATION TECHNOLOGY 

Program Educational Objectives 

(PEOs) 

PEOL: Core Capabilities / Competence: Impart profound knowledge in humanities 

and basic sciences along with core engineering concepts for practical understanding 
and project development. 

PEO2: Career Advancement: Enrich analytical and industry based technical skills 

through ICT for accomplishing research, higher education and entrepreneurship 

PE03: Life-Long Learning: Infuse life-long learning, professional ethics, adaptation 
to innovation and effective communication skills with a sense of social awareness. 



Vidya Jyothi Institute of Technology 
DPARTMENT OF INIORMATION TECIUNOLOGY 

Progran Outeomes 
PO Engineering Knowledge: Apply knowledgc of mathematics, science, cngincering fundamentals and an engineering specialization to the solution of complex engincering problems. 

PO2 P'roblem Analysis: ldentify, Fomulatc, review rescarch literaturc, and analyze complcx engineering probiems feaching substantiated conclusions using first principles of mathematics, natural sciences and engineering SCIences. 

PO3 Design/Development of Solutions: Design solutions for complex cngincering problems and design system components or processes that meet the specitlied necds with appropriate consideration for the public health and safcty and the cultural, sociclal and environmental considerations. 
PO4 Conduct Investigations of Complex problems: Usc rescarch-based knowledge and rescarch methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions. 

PO5 Modern Tool Usage: Create, Select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. 

The Engineer and Society: Apply Reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering

PO6 

practice. 

Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development. 

PO7 

PO8 Ethies: Apply Ethical Principles and commit to professional ethics and responsibilities and norms of the 
engineering practice. 

PO9 Individual and Teamwork: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings. 

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large such as, being able to comprehend and with write effective reports and design documentation, make effective presentations, and give and receive clear instructions. 

PO10 

Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team to manage 

PO11 

projects and in multi disciplinary environments. 

Life-Long Learning: Recognize the need lor and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. 

PO12 



Program Specific Outcomes 

(PSOs) 



Vidya Jyothi Institute of Technology 
(Affiliated to JNTUH) 

AziznagarGate,C.B.Post,Hyderabad-500 075 

DEPARTMENT OF INFORMATION TECHNOLOGY 

Program Specific Outcomes 

(PSOs) 

PSO1: Enhanced ability in applying mathematical abstractions and algorithmic design 
along with programming tools to solve complexities involved in efficient 

programming. 

PSO2: Developed effective software skills and documentation ability for graduates to 
become employable/ higher studies/ Entrepreneur/ Researcher. 



Course Outcomes (Cos) 



Course Outcomes: 
Understand OOP concepts to apply basic Java constructs.

2. Analyze different forms of inheritance and usage of Exception Handling
3.Understand the different kinds of file 1/0, Multithreadingin complex Java programs, 

and usage of Container classes 
4 Contrast different GUI layouts and design GUI applications S. Construct a full-fledged Java GUl application, and Applet with database

connectivity 



Mapping of Course Outcomes, 

POs and PSOs 



Articulation matrix of Course outcomes with Pos 

PO1 PO2 PO3 P04 PO7 PO8 PO9 PO10 | PO11 PO12 PO5 PO6 

CO1 

CO2 
3 2 

3 3 

CO3 
2 

3 
3 

C04 
3 3 2 

CO5 

21 3 3 3 3 

Articulation matrix of Course outeomes with PSOs 

PSO1 PSO2 

CO1 

CO2 

CO3 

C04 

CO5 

Java Programming (R15) - Course File 



Articulation matrix of Course 
outcomes 

with Pos 

PO1 PO2 PO3 P04 PO5 PO6 PO7 PO8 PO9 PO10 PO11 
PO12 

2 

1 3 

cOI 3 3 3 3 
33 

2 2 
1 I3 2 

CO2 3 

C03 3 

3 2 2 
13 2 

333 

333 33 
333 33 2 

2 T3 2 C04 2 1 

CO5 

Articulation matrix of Course outcomes with PSOs 

PSO2 PSO1 

3 
CO1 

CO2 

3 3 
CO3 

3 3 
CO4 

3 3 
CO5 



Lecture Plan /Teaching Plan 



VIDYA JYOTHI INSTITUTE OF TECHNOLOGY 
(An Autonomous Institution) 

DEPARTMENT OF INFORMATION TECHNOLoGY 

D.io0on Name 
Class: IB.Tech, IISEM 

Subject: Java Programming 

Lecture Actual Date Expected 
Date 

Topics to be Covered Suggested Books 

UNIT-I 

Java Basics 
30/03/202130l03 20 
31/03/2021 06 042 

LI History of Java, Java buzzwords TI(Chapter 1) 
Data types, variables, scope and life time 

of variables 
Arrays, operators, expressions, control 
statements
Type conversion and casting, simple java 

L2 TI(Chapter 3) 

TI(Chapter 3, 5)06/04/2021 4 
07/04/2021 qlul 

09/04/2021 nlu2 

12/04/2021 ul2 

L3 

L4 TI(Chapter 2, 3) 
program 

L5 Object-Oriented Paradigm TI(Chapter 2) 
Basic Concepts of Object Oriented 

Programming- Objects and Classes 
L6 TI(Chapter 1) 

16/04/2021 194l/ 

19/04/2021 0/u 
L7 Applications of OOPs TI(Chapter 1) 

Concepts of classes, objects, constructors,

methods 
Access control, this keyword, garbage 

collection 
Overloading methods and constructors, 

parameter passing, 
Recursion, nested and inner classes, 

Strings 

L8 TI(Chapter 6) 

20/04/2021 a3u 
L9 TI(Chapter 6) 

23/04/202124 /u/ L10 TI(Chapter 6) 
26/04/2021 

TI Chapter 6) L11 
TI(Chapter8) 27/04/2021 9 /u ly 

28/04/2021304 
L12 Object Class 

L13 Tutorial Class 
UNIT-- II 

Inheritance& Polymorphism
Introduction, Forms of inheritance-

specialization, specification, construction, 

extension 
Limitation, combination, Member access 

TI(Chapter 8) 3o(ul o 
L14 

Ti(Chapter 8) |s l 
TI(Chapter 8) 3lsy 

L15 rules, super keyword 
polymorphism- method overriding, 

abstract classes, Final keyword 
Interfaces and Packages 

L16 

ylsly 
TI(Chapter 9) 7sl 7Shj 

TI(Chapter9) elsl lsl 
TI(Chapter 9) 1lsu s Is 

L17 
Introduction to Interfaces 

Differences between abstract classes and 

L18 interfaces 

Multiple inheritance through interfaces 
L19 



TI(Chapter 9) 14 sly t 
TIChapter 9) 6 t15 

L20 Creating and Accessing a Package 

Understanding CLASSPATH, import1ng 
packages 

L21 

Exception handling 

Concepts of exception handling, exception 
hierarchy 
Built in exceptions, usage of try, catch, 
finally, throw and throws 

L22 TIChapter 10) 

TIChapter 10) 18rl lsy 

TI(Chapter 10) 205hu 215 P 
L23 

L24 Creating own exception sub classes 

L25 Tutorial Class 

UNIT-- III 
Files 

TI(Chapter 19) 2 4/L 31 
TIChapter 19) 46lL 162 

L25 Introduction to I/O Streams: Byte Streams 

L26 Character Streams, File /O 

Multi threading 

Differences between multi threading and 

multitasking 24 2 L27 TI(Chapter 11) 1t 

TIChapter 11) |164 / / 
TI(Chapter 11) 16y 76 
TI(Chapter 11) |22y 191b/y 
TI(Chapter 11) |218ly 2416ly 

L28 Thread life cycle 

L29 Creating threads, thread priorities 

L30 Synchronizing threads 

L31 Inter thread communication 

java.util Package 

The Collection Interface: List, Map, Set TI(Chapter 17) y 226/ L32 

The Collection class: LinkedList Class, 
HashMap Class, TreeSet Class 
StringTokenizer, Date, Random, Scanner. TI(Chapter 18) all B|L 

Ti(Chapter 17) ly L33 

L34 
UNIT-- IV 

AWT 

TI(Chapter 23) lnlu |9/2 
TI(Chapter 23) 2. 6 

L35 Class hierarchy 

L36 Component, Container, Panel 

TI(Chapter 23) y 17 
TI(Chapter 23) 29(7 7y 

TI(Chapter 23) 36 (ly 2o7/ 

L37 Window 

L38 Frame 

L39 Graphics 
AWT controls 

Labels, Button, Scrollbar, Text 

components 

CheckBox, CheckBoxGroup, Choice, List 

TI(Chapter 24) 3 y97 
TIChapter 24) y 7y hla 
T(Chapter 24) slgla ohl2/ 

TI(Chapter 24) 6laly 8 h 

L40 

LA1 

L42 Pane- ScrollPane, Dialog, MenuBar 

L43 Programs on AWT controls 



Programs on AWT controls 

TIChapter 24) y4y 
Event Handling 

L45 Events, Event sources, Event classes TIChapter 22)lt sleu 
TI(Chapter 22) Eu 

TI(Chapter 22) lrly otleu 

L46 Event Listeners, Delegation event model 
Handling mouse and keyboard events, 
Adapter classes. 

L47 

L48 Tutorial Class 
TIChapter 22)1 y u 

UNIT-- V 
Layout Managers 

Layout manager types - Border, Grid, 

Flow, Card and GridBag Layouts 
L49 

TI(Chapter 23) 

Applets 
L50 Concepts of Applets 

Differences between applets and 
applications 

Life cycle of an applet, Create Applets 

TIChupter 21)12t hoal8ly 
TI(Chapter 21) 1a le_t(&/v L51 

TI(Chapter 21) 1 lel/ u&// 
TI(Chapter 21) 1 128 

L52 

L53 Passing parameters to applets 

JDBC Connectivity 

72(Chapter 3) lelyl / 
T2(Chapter 4) vlel 

L54 JDBC Type 1 to 4 Drivers 

Connection establishment, Query 

Execution, JDBC Programs 
L55 



Unit wise Date of Completion 
and Remarks 



o 
Remarks: 

Unit II 

Date: 

Remarks: 

Unit-III 

Date 

Remarks 
Co-pllaA 

Unit-IV 

Date: 3y 
Remarks: 

Unit V 

Date 

Remarks: 
Copuls 

Page 16 

Java Programming (R19) - Course File 



Unit wise Assignment 

Questions 



t Wise Assignments (With different Levels of thinking - Blooms Taxonomy and Course 

Outcomes) 

DIscuss the various characteristics of object oriented programming concepts. 

(Level-2, CO-1) 
1 

EXplain about different loop control statements and conditional statements with an 

examples (Level-2, CO-1) 

2 

3 DIscuss about the features of constructors and constructor overloading and with an 

example (Level-2, CO-1) 

Differentiate Character Streams and Byte Streams (Level-4, CO-2) 

List different types of inheritances in java? Explain each of them in detail with an 

example program. (Level-1, CO-2) 
2 

Explain with an example how thread class methods can be used to control the behavior| 

ofa thread? (Level-2, CO-3) 
1 

Explain inter thread communication in detail. (Level-2, CO-3) 

1 Write a program to handle mouse events and mouse motion events. (Level-1, CO4) 

What are different Layouts? Explain with example (Level-1, CO-4) 

Write a program to develop calculator (Level-1, C0-5) 

How to establish a connection in JDBC. Explain. (Level-2, CO-5) 
2 

Page 17 

Java Programming (R19) - Course File 



Unit-V 

What is JDBC? Explain different types of JDBC drivers. (Level-2) (CO-5) 
Write a Java program to display the message on the applet wherever mOuse click 
occurs. (Level-4) (CO-5) 

2 

Write short note on following components. 
(a) Label 

b) TextField 
(C) TextArea 
(d) List 
() Choice 

(Button 
() Checkbox 
h) MenuBar 

(Level-1) (C0-5) 

Java Programming (R19) - Course File 
Page 19 



Atess Odr 

rokus Pasod 

modiFie fretettl Aess ModiHie 

when methods and dlda 
members 

ate decax 

Jhe samtet, 
aCess 

hem 

within 
the 

as vom "subclasscs 
we Can 

*class Anina 
l Proteotad metud 

ietectd void dislayc) 

Systm out 7istkn("a am an animul"): 

3 
class Deqextends fel 

Publi'e stdt veid rainstring ci arg#){ 
d tl Cr an objed dt day 

D-g deg Vew DagC) 

dog. dis 

3 

oudtd 
am an animal 

uwe atdedlae clesl Jnter fabs otetd 

Scanned with Camscanner 



fublke ACLesS Modifer- 

Pablic ten 1 M aess aym vam anguhré 

hes no Scfe Testviction. 

n ekhad s, VaYiablkS,clnstes, ah d So on afe dauard 

Tt hos 

Arimas 1Pnblic dass 
&Public class 

fublhc t es andr 4 Pabic, Varia b le 

Mblic Void ublie Yoid display fab 1 lic mehe df 

s4stem Ou ritin (L am an aniva,") 

3 
IMain Jav 

Pablic class main 

fab ie statie Void main (cting Cgs){ 

Anm ani mad e new Anima Ac aLr fb]ie clhos 

animaea cou-4 llaccesing rublbe vaviab le 

onim d is playc); latcessin Pablic mebor. 

3 . 

3 

Oudpd 
Qn imas 

1 have 4 Jeys 

lic be aceM ed anguhere 
Can 

Scanned with CamScanner 



Letodt access Mad-her 

fadknge P4 
ov 

class *A 

Void dsplag C) 

System ouct. printAn ("Hello wovl8! 

aubage P2; 

class k New 

Fublic stud Void main (styiy amsa) 

Y ob hew k) 
od. dislag () 

OutR 
COmple me er yon 

Scanned with CamScanner 



Assignment Ia java programm used to analyse student details using Abstract window toolkit(AWT) (GUI) 
import java.awt.* 
class Assignment 

Assignment() 

Frame f = new Frame( "MY ASSIGNMENT"); Label 11 = new Label( "studentID: ") Label 12 new Label("password: "); TextField t1 = new TextField(26); TextField t2 = new TextField(26); 
//t2.setEchoChar ("*"); 
Button b new Buttton("Login"); 
f.add(11) 
f.add(t1) 
f.add(12) 
f.add(t2) 
f.add(b); 

Label 13 = new Label("student_branch: "); 
CheckboxGroup cg = new CheckboxGroup (); 
Checkbox c1 = new Checkbox("IT", cg, true); 
Checkbox c2 = new Checkbox("CSE", Cg, false) ; 
Checkbox c3 = new Checkbox("ECE", Cg, false); 
Checkbox c4 new Checkbox( "EEE", cg, false)5 
Checkbox c5 new Checkbox( "MECH" ,cg, false); 
Checkbox c6 = new Checkbox( "AI", cg,false); 
Checkbox c7 = new Checkbox("CIVIL", cg, false) 
c1.setBounds (400,100, 50, 50) ; 
c2.setBounds (500, 150, 100, 100); 
c3.setBounds (600, 200, 150, 150); 
c4.setBounds (700, 250, 200, 200); 
c5.setBounds (800, 300, 250, 250); 
c6.setBounds (900, 350, 300, 300); 
c7.setBounds (1000,400, 350, 350); 
f. add (13); 
f.add(c1); 
f.add(c2); 
f.add(c3); 
f.add(c4); 
f.add(c5); 
f.add(c6); 
f. add(c7);

Label 17 new Label("Gender: "); 
CheckboxGroup cg1 = new CheckboxGroup (); 

Checkbox cbi = new Checkbox("male", cg1, true); 

Checkbox cb2 = new Checkbox("female", cg1, false) ; 

cb1.setBounds (900,450, 50, 50); 
cb2.setBounds (1000, 500, 50, 50) ; 

Page 1 



Assignment f. add(17): 
f.add(cbi1); 
f. add( cb2); 

Label 14 new Label("course enrol1l by student: "); List al= new List(7); 
al.setBounds(600, 550, 50, 5e); 
a1.add("c"); 
al.add("C++"); 
a1.add("Python"); 
al.add("Java") ; 
al.add("Machine learning"); 

al.add("Data Science"); 
a1.add("web devlopment"); 
f.add (14); 
f.add(al); 

Label 15 new Label("student Feedback: "); 
TextArea ta = new TextArea(20, 10); 
ta.setBounds (600, 600, 50, 50); 
f. add (15): 

f.add(ta); 

f.setSize(400, 400) 5 
f.setVisible (true) 
f.setBackground(Color.gray); 
f.setlayout (new FlowLayout (); 

public static void main (String[] args) 

ASsignment as new Assignment () 

Page 2 



Unit wise Question Bank 



VIDYA JYOTHI INSTITUTE OF TECHNOLOGY 
(An Autonomous Institution) 

Department of Information Technology 
B.Tech, II Sem (R19) 

Java Programming- Question Bank 

Faculty: P. Lakshmi Sony Phone no: 9908545005 

UNIT-I 

Short Answer Questions 

1. Explain briefly about history of java. 
2. Summarize standard Data types in JAVA. 

3. What is a constant? Explain different types of constants.

4. What isa Variable? Describe scope and life time of variables. 
5. Explain ragged arrays in JAVA 

What is a byte code in JAVA? 
7. Define type conversion. 

8. What is type casting? Explain. 
9. List OOP concepts 
10. Distinguish between procedural language and OOP language 

11. Define Encapsulation. 

6. 

12. Define Inheritance. 
13. Define Polymorphism. 
14. List advantages and disadvantages of OOPs. 
15. List the applications of OOPs. 
16. Discuss Inner classes with necessary syntax 
17. Define constructor. List the types of constructors 

18. Discuss recursion with example. 

19. List out the access control modifiers and explain in brief. 

20. Define garbage collection with necessary syntax 

21. Discuss static keyword for variables 

22. Why we use finalize) method ? 

23. Explain How to pass parameters with an example 

24. What is Object class ? List the methods 

Long Answer Questions 

. Discuss the various characteristics of object oriented programming concepts. 

2. Explain the features (buzzwords) of Java. 

3. Explain the importance of "this* keyword with an example. 

4. What is an Array? Explain Declaration & Initialization of ID and 2D array with an 

example 



26. Differentiate throw and throws with necessary syntax 
27. Discuss the purpose of finally block. 

Long Answer Questions 

1. List different types of inheritances in java. Explain each of them in detail with an example 

program. 
2. Explain the Uses of "Super" keyword with example code. 

3. Define dynamic binding. Explain with an example 
4. Explain method overriding. Demonstrate with an example program. 
5. Discuss in detail about creating and importing user defined packages with an example. 

Also explain the advantages of packages. 
6. What are various Member access rules? Explain with an example. 
7. Define interface. Justify how interfaces support multiple inheritance. 

8. Compare and contrastoveriding and overloading with an example program 

9. Explain the following 

a) finalkeywordb)finalize0 method e)finally block 

10. What is "final" keyword? Explain final with inheritance 

11. Explain exception hierarchy in detail. 
12. Explain exception handling mechanism with all the key words. Give example program 

13. Demonstrate creating user defined Exception with a program. 

UNIT-III 

Short Answer Questions 

1. Define stream.List the standard 10 streams 

2. Differentiate InputStrean and OutputStream 
3. Differentiate ByteStream and Character Stream 

4. Write a program to demonstrate console 10 operations. 

5. Write the syntax and an example for different forms of read() operation 

6. Write the syntax and an example for different forms of write() operation 
7. List the mandatory methods to implement threads 

8. Differentiate process and a thread. 

9. List and explain thread states. 

10. What are the different ways to create a thread? 

11. List the methods for inter-thread communication 

12. What are the pre defined thread priorities? 

13. How threads are synchronized? 
14. Explain about the alive() and join) methods. 

15. List the Thread class methods.

16. Differentiate Thread class and Runnable interface for creating threads. 

17. Define Collection Class and its framework. 



14. Differentiate MenuBar and Menultem write necessary syntax. 
15. Define ScollPane. Write the syntax to create ScrollPane 

16. Write the syntax to create Dialog box 

17. Explain about Events, Event sources, Event classes 

18. Differentiate Event Listeners and Event classes 

19. List the methods of MouselListener interface 

20. List the Methods of KeyListener interface 

21. Explain ActionEvent Class 

22. Define Adapter class with necessary syntax and an example 

Long Answer Questions 

1. Explain AWT class hierarchy 
2. Write a program to create a Window using AWT 

3. List the methods with necessary syntax to Draw and Fill Rectangle and an Arc using 

Graphics object 
4. Explain Delegation Event Model in java with an example 

5. Write a program to demonstrate Mouse Events 

6. Write a program to demonstrate Key Events 

7. Explain ActionEvent class and ActionListener interface with an example program 

8. Write a program to demonstrate MouseAdapter class. 

9. Write a program to create TextArea with scrollbars 
10. Write a program to display an Application Form using required A WT controls. 

UNIT- V 

Short Answer Questions 

1. Define Layout manager with its uses. 

2. List the various layouts in java 

3. What is a Flow Layout? Write the necessary syntax 

4. List the alignment constants of FlowLayout 

5. Explain Grid Layout with its syntax. 

6. Differentiate border layout and grid layout 

7. List the constants of BorderLayout 

8. Differentiate Grid and Gridbag Layout 

9. List Gridbag Layout constraints 

10. What is the purpose of card Layout? Write the necessary syntax for creating card layout. 

11. Define Applet. List the life cycle methods of an Applet 
12. What is the purpose of Appletviewer tool? 

13. Explain the different approaches of running an applet 

14. Why we use sparam >tag for an applet 

15. Explain paint() method of an applet 



Mid Question Papers 



Vidya Jyothi Institute of Technology (Autonomous) 

(Acredited by NAAC & NBA, Approved By A.JC.T.E, New Delhi, Permanently Afiliated to JNTU, Hyderabad) 

(Aziz Nagar, C.B.Post, Hyderabacd -500075) 

Il Year B.Tech II Semester Ist Mid Exam 
Duration: 90Min 

Marks: 20 Branch: 
Sub: Java Programming 
Date: 18-02-2020 

Course Outcomes: 
1.Understand theObjectOrientedProgramming concepts. 
2.Applythe concepts of package and interfaces. 
3.Apply the concepts of Exceptions and mult ithreading. 

4.Analyze GUl applications and AWT using Frames. 

5.Design the programs using Applet and JDBC Concepts. 

Bloom's Level: 
Remember 
Understand 
Apply 
Analyze 
Evaluate 
Create 

Session:FN 

V 
Course Bloom's PART-A (3Qx2M =6Marks) Marks Outcomes 

CO PO 
Level 

ANSWER ALL THE QUESTIONS 
1.i) Define polymorphism . List the types 

OR 
ii) Declare and Intialize ID and 2DArrays 

2.i) Differentiate throw and throws clause 
OR] 

) Define inheritance. Give syntax and example_ 
3.1) List the thread states 

[OR 
3 2 

ii) Differentiate process and thread 
Course 

Bloom's PART-B (5+5+4=14 Marks) Outcomes Marks 
Level 

CO PO ANSWER ALL THE QUESTIONS 
4.i.a) Explain the Buzzwords of java 

b) Differentiate break and continue statements with an example 

OR] 
2.5 ii.a) Define costructor. Demonstarte constructor overloading 

Explain Type casting and conversion with necessary syntax b) 2.5 

Define interface. Multiple inheritance is supported through 
. 1.a) interfaces. justify. 

b) Demonstrate multilevel inheritance with a program 

OR 
Explain Exception Handling Mechanism 5 ii. 2 

Demonstrate creating a thread by Extending Thread class 3 4 6.i) 
[OR] 

Explain Thread Priorities, write a program to set and get 
ii) priority of a thread 3 4 

***VJIT(A)*** 

Controller of Exminations DIRECTOR 



ava lopon 

Schtma. ok Cveluodion 

TB.Tech Soeslo) id T a ls-02- 2020 

Etanch: T1 
bjeckaa oom u 

Nlax Ma s: o Maas 

Tnskuce):D Sotoa 

Pont-

1Dne olsmolphsn 

M 

i)De clate an nbiaze 10 andl &D aRJS 

intolize DR2D 

M 

cteranbale
Haos and lota25 dlau 

blreshale 
Laad& Tqocdá - 2r 

1 eino in herlone, 
nie dynlax 

od exonp k- Ir9 

de binitico 
inhoidance M 

onded coh an epony 
- A7 

lis e haead slaks 2 9M 
3. 1 

leenhle psocex oncd oead -2 



oeuakale -A Pre cey 

4 io 
3r 

6plain he B A ot jawa 3 

B.ahne Slakeae.h a0:14 

dlrrun biele bsaak 
9nd ohn 

Slakeae.k a0.14 

an endn pe 

btaak and Cohint nlat-17 

Aintas hucBoaon 
hele 

Carshckil overlading -35/ 

debosihea ob Cayhue 1 

Conshuchi ovej laading 
.5M 

alaeng ->35 

6pain e Caskra 
aet 

oirion 
uedh ncenaly Szokot 

5 
M 

debire bype Cat hi 

pe 
ConvISico 

btonpe aovel jo lox -
15 

51.a) debini 
nbikag Aulhiple 

nkrtar in 
hilone 1s igpa kel 

ongl inbortate jyske 
cebnt inkerlate- 1 

kiu lhpe n herilane uathan eonny e-/ 



6b> deonyhale mulkleel iohailant alth a hoplO 

mulevel inhei lana dbike) -M 

plain htopho hanllirarMechaniS+n 511 

Docaonshek Croaking a dkooocl b &kodiag30od clas - 4M 

dbonito ot toal4 -1 
loccad clan ulh on vxonp& ioqgon-39 

61i lain locnd qsuBi-ke, le a hognen to et ar 

4 ov8th ob a-Heaad 

-Iorad ouSutheg ly 
3 



Vidya Jyothi Institute of Technology (Autonomous) (Accrelted by NAAC & NIBA, Appraved By A1CTE, Ne elb1, Permanenitly A fillated ta &TUU, I1yderabad (A7iz Nagar,R Post, 11yderabnd, 504K175) 
I,II,II & IV Ycar B.Tech Il Semester Ist Mid xam Branch:I1- IT 

Sub: Java Programming 
Date: 

Duration: 90Min 
Marks: 20 

Session: Course Outcomes: 
1 Understand O0P concepts to apply basic Java constructs. 

Analyze different forms of inheritance and usage of Exception Handling 3. Understand the different kinds of file 1/O,Multithreading in complex Java programs, and usage of Container classes Contrast different GUl layouts and design GUl applications S. Construct a full-flcdged Java GUl application, and Applet with database connectivity Remember 
Understand 
Apply 
Analyze 
Evaluate 
Create 

. 

4. 

IV 

V 

Course PART-A (3Q*2M =6Marks)
Bloom's

Marks Outcomes
CO PO 

1,2, 3, 4, 

Level ANSWER ALL THE QUESTIONS 
1.i)List the features of O0P concepts. 

I5J112 2 TORJ 
ii) What is method overloading? Explain with an example. 1,2, 3,4, 

2 

1,2, 3, 4,| 2.i) Describe the use of "Super" keyword. 
2 |5, 11, 12 2 

OR 
1.2, 3, 4. 

5, 11, 12 
| 1,2,3,4 

3 5. 11, 12 2 

ii) Define the various steps for creating and importing packages. 
2 

3.i) Differentiate Character Streams and Byte Streams. 

OR 
| 1.2, 3, 4, 

3 5.1112 
i) Define Buffered Streams and its classification. 

Course 
Bloom's 

PART-B (5+5+4= 14 Marks) 
Outcomes Marks 

Level ANSWER ALL THE QUESTIONS CO PO 

1,2,3,4, 4.i.a) Explain the console input and output with an example. 

5, 11, 12| 3 
T,2,5, 4 3 lsu 12| 3 

b) Explain about nested classes in detail. 

[OR| 

1.2,3,4. 
5, 11, 12| 

Explain the importance of i)this i) static keywords in JAVA with example. 

1.2,3,4, 
List different types of inheritance in java? Explain each concept with 

25,11, 12 
1.2,3, 4, 
5.1L 12_3 

5. 1.a)suitable program. 

b)Define package. Write a java program to use packages. 
2 

ORI 

1,2,3,4, 
List out the keywords used for exceplion handling. Write any java progranm 

to illustrate with user defined exception ii.a) 
25, 11, 12 

1,2, 3. 4, 
3 L511.121 

6.i) llustrate the use of Byte Streams with examples 

OR| 
Ilustrate the use of InputStreamReader and OutpulSteam Wriler with 

ii) 
suitable program, T 5,11, 12| kh*V JIT(A)*** 

Dean Exminations 
DIRECTOR 



Vidya Jyothi Institute of Technology (Autonomous) 
(Accredited by NAAC & NBA, Approved By A.l.CT.E, New Delhi, Permanently Afiliated to JNTU, Hyderabad) 

(Aziz Nagar, C.B. Post, Hyderabad -500075) 

II Year B.Tech II Semester Ist Mid Examn 
Duration: 90Min 

Marks: 20 Branch: 
Sub: Java Programming 
Date: 18-02-2020 

Course Outcomes: 
1.Understand theObjectOrientedProgramming concepts. 

Session:FN 

2.Applythe concepts of package and interfaces. 

3.Apply the concepts of Exceptions and mult ithreading. 

4.Analyze GUI applications and AWT using Frames 

5.Design the programs using Applet and JDBC Concepts. 

Bloom's Level: 
Remember 
Understand 
Apply 
Analyze 
Evaluate 
Create VI 

Course Bloom'sMarks PART-A (30x2M=6Marks) Outcomes 
CO PO 

Level 

ANSWER ALL THE QUESTIONS 
1.i) Define constructor.list the types 

2 
[OR] 

Discuss operator precedence and associativity with an expression 

2.i) Differentiate try and catch block 
ii) 2 

OR] 

i)Explain the purpose of final keyword 

3.i) List the Thread Priority methods with syntax 
ORJ 

ii) Differentiate process and thread Course Bloom's Marks PART-B (5+5+4= 14 Marks) Outcomes Level 
CO PO 

ANSWER ALL THE QUESTIONS 

4.i.a) Explain object oriented programming concepts 

b) Explain the concept of garbage collection 

[OR 
3 

ii.a) Explain Type casting and conversion with necessary syntax 

b) Explain inner classes with necessary syntax 

Define package.Explain creating, importing and implementing 

5. l.a)packages with necessary code. 

b) Differentiate abstract class and an interface 

OR 
2 3 

ii.a) Demonstrate how to create user defined exceptions with a program | 
4 

b) Differentiate method Overloading and Overriding 

6.i) Explain the life cycle of a thread with a neat diagram 

OR] 

4 
i) Write a program to demonstrate multiple child threads 

**VJIT(A)*** 

DIRECTOR 
Controller of Exminaticns 

















JAVA PROGRAMMING Page 1  

 

UNIT-I 

OOP Concepts 

 

Object Oriented Programming is a paradigm that provides many concepts such as 

inheritance, data binding, polymorphism etc. 

 

Simula is considered as the first object-oriented programming language. The programming 

paradigm where everything is represented as an object is known as truly object-oriented 

programming language. 

 

Smalltalk is considered as the first truly object-oriented programming language. 

 

OOPs (Object Oriented Programming System) 

 

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is 

a methodology or paradigm to design a program using classes and objects. It simplifies the 

software development and maintenance by providing some concepts: 

 

o Object 

o Class 

o Inheritance 

o Polymorphism 

o Abstraction 

o Encapsulation 

 

Object 

 

Any entity that has state and behavior is known as an object. For example: chair, pen, table, 

keyboard, bike etc. It can be physical and logical. 

 

Class 

 

Collection of objects is called class. It is a logical entity. 

 

Inheritance 

 

When one object acquires all the properties and behaviours of parent object i.e. known as 

inheritance. It provides code reusability. It is used to achieve runtime polymorphism. 



JAVA PROGRAMMING Page 2  

Polymorphism 

 

 

When one task is performed by different ways i.e. known as polymorphism. For example: to 

convince the customer differently, to draw something e.g. shape or rectangle etc. 

 

In java, we use method overloading and method overriding to achieve polymorphism. 

Another example can be to speak something e.g. cat speaks meaw, dog barks woof etc. 

Abstraction 

Hiding internal details and showing functionality is known as abstraction. For example: phone 

call, we don't know the internal processing. 

 

In java, we use abstract class and interface to achieve abstraction. 

 

Encapsulation 

 

Binding (or wrapping) code and data together into a single unit is known as encapsulation. 

For example: capsule, it is wrapped with different medicines. 

 

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all 

the data members are private here. 

 

Benefits of Inheritance 

 

• One of the key benefits of inheritance is to minimize the amount of duplicate code in an 

application by sharing common code amongst several subclasses. Where equivalent code 

exists in two related classes, the hierarchy can usually be refactored to move the common 

code up to a mutual superclass. This also tends to result in a better organization of code and 

smaller, simpler compilation units. 

• Inheritance can also make application code more flexible to change because classes that 

inherit from a common superclass can be used interchangeably. If the return type of a 

method is superclass 

• Reusability - facility to use public methods of base class without rewriting the same. 

• Extensibility - extending the base class logic as per business logic of the derived class. 



JAVA PROGRAMMING Page 3  

• Data hiding - base class can decide to keep some data private so that it cannot be 

altered by the derived class 

Procedural and object oriented programming paradigms 



JAVA PROGRAMMING Page 4  

Java Programming- History of Java 

 

The history of   java   starts from Green Team. Java team members (also known    as Green 

Team), initiated a revolutionary task to develop a language for digital devices such as set-top 

boxes, televisions etc. 

 

For the green team members, it was an advance concept at that time. But, it was suited for internet 

programming. Later, Java technology as incorporated by Netscape. 

 

Currently, Java is used in internet programming, mobile devices, games, e-business solutions etc. 

There are given the major points that describes the history of java. 

 

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in 

June 1991. The small team of sun engineers called Green Team. 

 

2) Originally designed for small, embedded systems in electronic appliances like set- top boxes. 

 

3) Firstly, it was called "Greentalk" by James Gosling and file extension was .gt. 

 

4) After that, it was called Oak and was developed as a part of the Green project. 

Java Version History 

 

There are many java versions that has been released. Current stable release of Java is Java SE 8. 

1. JDK Alpha and Beta (1995) 2. 

JDK 1.0 (23rd Jan, 1996) 3. JDK 

1.1 (19th Feb, 1997) 4. J2SE 1.2 

(8th Dec, 1998) 5. J2SE 1.3 (8th 

May, 2000) 6. J2SE 1.4 (6th Feb, 

2002) 7. J2SE 5.0 (30th Sep, 2004) 

8. Java SE 6 (11th Dec, 2006) 

9. Java SE 7 (28th July, 2011) 

10.Java SE 8 (18th March, 2014) 



JAVA PROGRAMMING Page 5  

Features of Java 

There is given many features of java. They are also known as java buzzwords. The Java Features 

given below are simple and easy to understand. 

1. Simple 

2. Object-Oriented 

3. Portable 

4. Platform independent 

5. Secured 

6. Robust 

7. Architecture neutral 

8. Dynamic 

9. Interpreted 

10. High Performance 

11. Multithreaded 

12. Distributed 

 

 

 

Java Comments 

 

The java comments are statements that are not executed by the compiler and interpreter. The 

comments can be used to provide information or explanation about the variable, method, class or 

any statement. It can also be used to hide program code for specific time. 

 

Types of Java Comments 

 

There are 3 types of comments in java. 

 

1. Single Line Comment 

2. Multi Line Comment 

3. Documentation Comment 

 

Java Single Line Comment 

 

The single line comment is used to comment only one line. 

 

Syntax: 

 

1. //This is single line comment 



JAVA PROGRAMMING Page 6  

10 

10 

Example: 

 

public class CommentExample1 { 

public static void main(String[] args) { 

int i=10;//Here, i is a variable 

System.out.println(i); 

} 

} 

 

Output: 

 

 

 

Java Multi Line Comment 

 

The multi line comment is used to comment multiple lines of code. 

 

Syntax: 

 

/* 

This 

is 

multi line 

comment 

*/ 

 

Example: 

 

public class CommentExample2 { 

public static void main(String[] args) { 

/* Let's declare and 

print variable in java. */ 

int i=10; 

System.out.println(i); 

} } 

 

Output: 

 

 



JAVA PROGRAMMING Page 7  

javac Calculator.java 

javadoc Calculator.java 

Java Documentation Comment 

 

The documentation comment is used to create documentation API. To create documentation API, 

you need to use javadoc tool. 

 

Syntax: 

 

/** 

Thi

s is 

documentatio

n comment 

*/ 

 

Example: 

 

/** The Calculator class provides methods to get addition and subtraction of given 2 numbers.*/ 

public class Calculator { 

/** The add() method returns addition of given numbers.*/ 

public static int add(int a, int b){return a+b;} 

/** The sub() method returns subtraction of given numbers.*/ 

public static int sub(int a, int b){return a-b;} 

} 

 

Compile it by javac tool: 

 

 

Create Documentation API by javadoc tool: 

 

 

Now, there will be HTML files created for your Calculator class in the current directory. Open 

the HTML files and see the explanation of Calculator class provided through documentation 

comment. 



JAVA PROGRAMMING Page 8  

Data Types 

 

Data types represent the different values to be stored in the variable. In java, there are two types of data 

types: 

 

o Primitive data types 

o Non-primitive data types 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Type Default Value Default size 

 

boolean 

 

False 

 

1 bit 

 

char 

 

'\u0000' 

 

2 byte 

 

byte 

 

0 

 

1 byte 

 

short 

 

0 

 

2 byte 

 

int 

 

0 

 

4 byte 

 

long 

 

0L 

 

8 byte 

 

float 

 

0.0f 

 

4 byte 

 

double 

 

0.0d 

 

8 byte 

 

Java Variable Example: Add Two Numbers 

class Simple{ 
public static void main(String[] args){ 

int a=10; 

int b=10; 



JAVA PROGRAMMING Page 9  

int c=a+b; 

System.out.println(c); 

}} 

 

Output:20 



JAVA PROGRAMMING Page 10  

Constants in Java 

 
A constant is a variable which cannot have its value changed after declaration. It uses the 'final' 

keyword. 

Syntax 

modifier final dataType variableName = value; //global constant 

 

modifier static final dataType variableName = value; //constant within a c 

Variables and Data Types in Java 

 

Variable is a name of memory location. There are three types of variables in java: local, instance 

and static. 

 

There are two types of data types in java: primitive and non-primitive. 

 

Types of Variable 

There are three types of variables in java: 

 

o local variable 

o instance variable 

o static variable 

 

1) Local Variable 

 

A variable which is declared inside the method is called local variable. 

 

2) Instance Variable 

 

A variable which is declared inside the class but outside the method, is called instance variable . It 

is not declared as static. 

 

3) Static variable 

 

A variable that is declared as static is called static variable. It cannot be local. 

We will have detailed learning of these variables in next chapters. 

Example to understand the types of variables in java 

class A{ 

int data=50;//instance variable 

static int m=100;//static variable 

void method(){ 

int n=90;//local variable 

} 

}//end of class 

 



JAVA PROGRAMMING Page 11  

Scope and Life Time of Variables 

The scope of a variable defines the section of the code in which the variable is visible. As a 

general rule, variables that are defined within a block are not accessible outside that block. The 

lifetime of a variable refers to how long the variable exists before it is destroyed. Destroying 

variables refers to deallocating the memory that was allotted to the variables when declaring it. 

We have written a few classes till now. You might have observed that not all variables are the 

same. The ones declared in the body of a method were different from those that were declared in 

the class itself. There are three types of variables: instance variables, formal parameters or local 

variables and local variables. 

Instance variables 

 

Instance variables are those that are defined within a class itself and not in any method or 

constructor of the class. They are known as instance variables because every instance of the class 

(object) contains a copy of these variables. The scope of instance variables is determined by the 

access specifier that is applied to these variables. We have already seen about it earlier. The 

lifetime of these variables is the same as the lifetime of the object to which it belongs. Object 

once created do not exist for ever. They are destroyed by the garbage collector of Java when there 

are no more reference to that object. We shall see about Java's automatic garbage collector later 

on. 

Argument variables 

 

These are the variables that are defined in the header oaf constructor or a method. The scope of 

these variables is the method or constructor in which they are defined. The lifetime is limited to 

the time for which the method keeps executing. Once the method finishes execution, these 

variables are destroyed. 

Local variables 

 

A local variable is the one that is declared within a method or a constructor (not in the header). 

The scope and lifetime are limited to the method itself. 

 

One important distinction between these three types of variables is that access specifiers can be 

applied to instance variables only and not to argument or local variables. 

In addition to the local variables defined in a method, we also have variables that are defined in 

bocks life an if block and an else block. The scope and is the same as that of the block itself. 



JAVA PROGRAMMING Page 12  

Operators in java 

 

Operator in java is a symbol that is used to perform operations. For example: +, -, *, / etc. 

There are many types of operators in java which are given below: 

o Unary Operator, 

o Arithmetic Operator, 

o shift Operator, 

o Relational Operator, 

o Bitwise Operator, 

o Logical Operator, 

o Ternary Operator and 

o Assignment Operator. 

 

Operators Hierarchy 



JAVA PROGRAMMING Page 13  

Expressions 

Expressions are essential building blocks of any Java program, usually created to produce a new 

value, although sometimes an expression simply assigns a value to a variable. Expressions are 

built using values, variables, operators and method calls. 

Types of Expressions 

 

While an expression frequently produces a result, it doesn't always. There are three types of 

expressions in Java: 

 

• Those that produce a value, i.e. the result of (1 + 1) 

• Those that assign a variable, for example (v = 10) 

• Those that have no result but might have a "side effect" because an expression can include 

a wide range of elements such as method invocations or increment operators that modify 

the state (i.e. memory) of a program. 

Java Type casting and Type conversion 

 

Widening or Automatic Type Conversion 

Widening conversion takes place when two data types are automatically converted. This happens 

when: 

▪ The two data types are compatible. 

▪ When we assign value of a smaller data type to a bigger data type. 

 

For Example, in java the numeric data types are compatible with each other but no automatic 

conversion is supported from numeric type to char or boolean. Also, char and boolean are not 

compatible with each other. 

 

 

 

 

 

 
Narrowing or Explicit Conversion 

If we want to assign a value of larger data type to a smaller data type we perform explicit type 
casting or narrowing. 

▪ This is useful for incompatible data types where automatic conversion cannot be done. 

▪ Here, target-type specifies the desired type to convert the specified value to. 

 

 

 

 

 

 

https://www.thoughtco.com/variable-2034325


JAVA PROGRAMMING Page 14  

Output: 

WINTER 

SPRING 

SUMMER 

FALL 

Java Enum 

 

Enum in java is a data type that contains fixed set of constants. 

 

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY, 

THURSDAY, FRIDAY and SATURDAY) , directions (NORTH, SOUTH, EAST and WEST) 

etc. The java enum constants are static and final implicitly. It is available from JDK 1.5. 

Java Enums can be thought of as classes that have fixed set of constants. 

Simple example of java enum 

class EnumExample1{ 

public enum Season { WINTER, SPRING, SUMMER, FALL } 

 

 

public static void main(String[] 

args) { for (Season s : 

Season.values()) 

System.out.println(s); 

}} 

 

Control Flow Statements 

 

The control flow statements in Java allow you to run or skip blocks of code when special 

conditions are met. 

The “if” Statement 

The “if” statement in Java works exactly like in most programming languages. With the help of 

“if” you can choose to execute a specific block of code when a predefined condition is met. The 

structure of the “if” statement in Java looks like this: 

 

if (condition) { 

// execute this code 

} 



JAVA PROGRAMMING Page 15  

The condition is Boolean. Boolean means it may be true or false. For example you may put a 

mathematical equation as condition. Look at this full example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creating a Stand-Alone Java Application 

1. Write a main method that runs your program. You can write this method anywhere. In this 

example, I'll write my main method in a class called Main that has no other methods. For 

example: 

2. public class Main 
3. { 

4. public static void main(String[] args) 

5. { 

6. Game.play(); 

7. } } 

8. Make sure your code is compiled, and that you have tested it thoroughly. 

9. If you're using Windows, you will need to set your path to include Java, if you haven't 

done so already. This is a delicate operation. Open Explorer, and look inside 

C:\ProgramFiles\Java, and you should see some version of the JDK. Open this folder, and 

then open the bin folder. Select the complete path from the top of the Explorer window, and 

press Ctrl-C to copy it. 

 

Next, find the "My Computer" icon (on your Start menu or desktop), right-click it, and select 

properties. Click on the Advanced tab, and then click on the Environment variables button. 

Look at the variables listed for all users, and click on the Path variable. Do not delete the 

contents of this variable! Instead, edit the contents by moving the cursor to the right end, 

entering a semicolon (;), and pressing Ctrl-V to paste the path you copied earlier. Then go 

ahead and save your changes. (If you have any Cmd windows open, you will need to close 

them.) 

 

10. If you're using Windows, go to the Start menu and type "cmd" to run a program that 

brings up a command prompt window. If you're using a Mac or Linux machine, run the 

Terminal program to bring up a command prompt. 

11. In Windows, type dir at the command prompt to list the contents of the current directory. 

On a Mac or Linux machine, type ls to do this. 



JAVA PROGRAMMING Page 16  

dataType[] arrayRefVar; // preferred way. 

or 

dataType arrayRefVar[]; // works but not preferred way. 

12. Now we want to change to the directory/folder that contains your compiled code. Look at 

the listing of sub-directories within this directory, and identify which one contains your code. 

Type cd followed by the name of that directory, to change to that directory. For example, to 

change to a directory called Desktop, you would type: 

 

cd Desktop 

 

To change to the parent directory, type: 

 

cd .. 

 

Every time you change to a new directory, list the contents of that directory to see where to go 

next. Continue listing and changing directories until you reach the directory that contains 

your .class files. 

 

13. If you compiled your program using Java 1.6, but plan to run it on a Mac, you'll need to 

recompile your code from the command line, by typing: 

 

javac -target 1.5 *.java 

 

14. Now we'll create a single JAR file containing all of the files needed to run your program. 

 

Arrays 

Java provides a data structure, the array, which stores a fixed-size sequential collection of 

elements of the same type. An array is used to store a collection of data, but it is often more 

useful to think of an array as a collection of variables of the same type. 

 

Instead of declaring individual variables, such as number0, number1, ..., and number99, you 

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,  
numbers[99] to represent individual variables. 

 

This tutorial introduces how to declare array variables, create arrays, and process arrays using 
indexed variables. 

 

 

Declaring Array Variables: 

To use an array in a program, you must declare a variable to reference the array, and you must 

specify the type of array the variable can reference. Here is the syntax for declaring an array 

variable: 

 

Note:  The  style  dataType[]  arrayRefVar  is  preferred.  The  style  dataType 

arrayRefVar[] comes from the C/C++ language and was adopted in Java to accommodate 
C/C++ programmers. 

 

Example: 



JAVA PROGRAMMING Page 17  

arrayRefVar = new dataType[arraySize]; 

dataType[] arrayRefVar = new dataType[arraySize]; 

dataType[] arrayRefVar = {value0, value1, ..., valuek}; 

double[] myList = new double[10]; 

The following code snippets are examples of this syntax: 

 

double[] myList; 

or 

double myList[]; 

Creating Arrays: 

// preferred way. 

 

// works but not preferred way. 

You can create an array by using the new operator with the following syntax: 

 

The above statement does two things: 

 

• It creates an array using new dataType[arraySize]; 

 

• It assigns the reference of the newly created array to the variable arrayRefVar. 

 

Declaring an array variable, creating an array, and assigning the reference of the array to the 

variable can be combined in one statement, as shown below: 

 

Alternatively you can create arrays as follows: 

 

 

 

The array elements are accessed through the index. Array indices are 0-based; that is, they start 

from 0 to arrayRefVar.length-1. 

 

 

 

 

Example: 

Following statement declares an array variable, myList, creates an array of 10 elements of 

double type and assigns its reference to myList: 

 

Following picture represents array myList. Here, myList holds ten double values and the indices 

are from 0 to 9. 



JAVA PROGRAMMING Page 18  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Processing Arrays: 

When processing array elements, we often use either for loop or for each loop because all of the 

elements in an array are of the same type and the size of the array is known. 

 

Example: 

Here is a complete example of showing how to create, initialize and process arrays: 



JAVA PROGRAMMING Page 19  

public class TestArray 

{ 

public static void main(String[] args) { 

double[] myList = {1.9, 2.9, 3.4, 3.5}; 

// Print all the array elements 

for (int i = 0; i < myList.length; i++) { 

System.out.println(myList[i] + " "); 

} 

// Summing all elements 

double total = 0; 

for (int i = 0; i < myList.length; i++) { 

total += myList[i]; 

} 

System.out.println("Total is " + total); 

// Finding the largest element 

double max = myList[0]; 

for (int i = 1; i < myList.length; i++) { 

if (myList[i] > max) max = myList[i]; 

} 

System.out.println("Max is " + max); 

} 

} 

 



JAVA PROGRAMMING Page 20  

1.9 

2.9 

3.4 

3.5 

Total is 11.7 

Max is 3.5 

This would produce the following result: 

 
public class TestArray { 

public static void main(String[] args) { 

double[] myList = {1.9, 2.9, 3.4, 3.5}; 

// Print all the array elements 

for (double element: myList) { 

System.out.println(element); 

}}} 

 

Java Console Class 

 

The Java Console class is be used to get input from console. It provides methods to read texts and 

passwords. 

 

If you read password using Console class, it will not be displayed to the user. 

 

The java.io.Console class is attached with system console internally. The Console class is 

introduced since 1.5. 

 

Let's see a simple example to read text from console. 

 

1. String text=System.console().readLine(); 

2. System.out.println("Text is: "+text); 

 

Java Console Example 

 

import java.io.Console; 

class ReadStringTest{ 

public static void main(String args[]){ 

Console c=System.console(); 

System.out.println("Enter your name: "); 

String n=c.readLine(); 

System.out.println("Welcome "+n); } } 



JAVA PROGRAMMING Page 21  

Enter your name: Nakul Jain 

Welcome Nakul Jain 

Output: Bike is created 

Output 

 

 

 

Constructors 

 

Constructor in java is a special type of method that is used to initialize the object. 

 

Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data 

for the object that is why it is known as constructor. 

 

There are basically two rules defined for the constructor. 

 

1. Constructor name must be same as its class name 

2. Constructor must have no explicit return type 

 

Types of java constructors 

 

There are two types of constructors: 

 

1. Default constructor (no-arg constructor) 

2. Parameterized constructor 

 

 

 

Java Default Constructor 

 

A constructor that have no parameter is known as default constructor. 

 

Syntax of default constructor: 

1. <class_name>(){} 

 

Example of default constructor 

 

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at 

the time of object creation. 

class Bike1{ 

Bike1(){System.out.println("Bike is created");} 

public static void main(String args[]){ 

Bike1 b=new Bike1(); 

} } 



JAVA PROGRAMMING Page 22  

111 Karan 

222 Aryan 

Example of parameterized constructor 

In this example, we have created the constructor of Student class that have two parameters. We 

can have any number of parameters in the constructor. 

class Student4{ 

int id; 

String name; 

 

Student4(int i,String n){ 
id = i; 

name = n; 

} 

void display(){System.out.println(id+" "+name);} 

 

public static void main(String args[]){ 

Student4 s1 = new Student4(111,"Karan"); 

Student4 s2 = new Student4(222,"Aryan"); 

s1.display(); 

s2.display(); 

} } 

 

Output: 

 

 

Constructor Overloading in Java 

 

Constructor overloading is a technique in Java in which a class can have any number of 

constructors that differ in parameter lists.The compiler differentiates these constructors by 

taking into account the number of parameters in the list and their type. 

 

Example of Constructor Overloading 

class Student5{ 

int id; 

String name; 

int age; 

Student5(int i,String n){ 

id = i; 
name = n; 

} 

Student5(int i,String n,int a){ 
id = i; 

name = n; 
age=a; 

} 

void display(){System.out.println(id+" "+name+" "+age);} 

 

public static void main(String args[]){ 

Student5 s1 = new Student5(111,"Karan"); 

Student5 s2 = new Student5(222,"Aryan",25); 

s1.display(); 



JAVA PROGRAMMING Page 23  

111 Karan 0 

222 Aryan 25 

111 Karan 

111 Karan 

s2.display(); 

} } 

 

Output: 

 

Java Copy Constructor 

 

There is no copy constructor in java. But, we can copy the values of one object to another like 

copy constructor in C++. 

 

There are many ways to copy the values of one object into another in java. They are: 

 

o By constructor 

oBy assigning the values of one object into another 

oBy clone() method of Object class 

 

In this example, we are going to copy the values of one object into another using java 

constructor. 

class Student6{ 

int id; 

String name; 

Student6(int i,String n){ 

id = i; 

name = n; 

} 

 

Student6(Student6 s){ 

id = s.id; 
name =s.name; 

} 

void display(){System.out.println(id+" "+name);} 

 

public static void main(String args[]){ 

Student6 s1 = new Student6(111,"Karan"); 

Student6 s2 = new Student6(s1); 

s1.display(); 

s2.display(); 

} } 

 

Output: 

 



JAVA PROGRAMMING Page 24  

public static int methodName(int a, int b) { 

// body 

} 

modifier returnType nameOfMethod (Parameter List) { 

// method body 

} 

Java -Methods 

A Java method is a collection of statements that are grouped together to perform an operation. 

When you call the System.out.println() method, for example, the system actually executes 

several statements in order to display a message on the console. 

Now you will learn how to create your own methods with or without return values, invoke a 

method with or without parameters, and apply method abstraction in the program design. 

Creating Method 

Considering the following example to explain the syntax of a method − 

 

Syntax 

 

Here, 

 

• public static − modifier 

 

• int − return type 

 

• methodName − name of the method 

 

• a, b − formal parameters 

 

• int a, int b − list of parameters 

 

Method definition consists of a method header and a method body. The same is shown in the 

following syntax − 

Syntax 

 

The syntax shown above includes − 

 

• modifier − It defines the access type of the method and it is optional to use. 

 

• returnType − Method may return a value. 

 

• nameOfMethod − This is the method name. The method signature consists of the method 



JAVA PROGRAMMING Page 25  

name and the parameter list. 



JAVA PROGRAMMING Page 26  

Output:before change 50 

after change 50 

• Parameter List − The list of parameters, it is the type, order, and number of parameters 

of a method. These are optional, method may contain zero parameters. 

• method body − The method body defines what the method does with the statements. 

Call by Value and Call by Reference in Java 

There is only call by value in java, not call by reference. If we call a method passing a value, it 

is known as call by value. The changes being done in the called method, is not affected in the 

calling method. 

Example of call by value in java 

In case of call by value original value is not changed. Let's take a simple example: 

class Operation{ 

int data=50; 

void change(int data){ 

data=data+100;//changes will be in the local variable only 

} 

public static void main(String args[]){ 

Operation op=new Operation(); 

System.out.println("before change "+op.data); 

op.change(500); 

System.out.println("after change "+op.data); 

} 

} 

 

 

In Java, parameters are always passed by value. For example, following program prints 

i = 10, j = 20. 

// Test.java 

class Test { 

// swap() doesn't swap i and j 

public static void swap(Integer i, Integer j) { 

Integer temp = new Integer(i); 
i = j; 

j = temp; 

} 

public static void main(String[] args) { 

Integer i = new Integer(10); 

Integer j = new Integer(20); 

swap(i, j); 
System.out.println("i = " + i + ", j = " + j); 



JAVA PROGRAMMING Page 27  

} 

} 

 

 

 

 

Static Fields and Methods 

 

The static keyword in java is used for memory management mainly. We can apply java static 

keyword with variables, methods, blocks and nested class. The static keyword belongs to the class 

than instance of the class. 

 

The static can be: 

 

1. variable (also known as class variable) 

2. method (also known as class method) 

3. block 

4. nested class 

 

Java static variable 

 

If you declare any variable as static, it is known static variable. 

 

o The static variable can be used to refer the common property of all objects (that is not 

unique for each object) e.g. company name of employees,college name of students etc. 

o The static variable gets memory only once in class area at the time of class loading. 

 

Advantage of static variable 

 

It makes your program memory efficient (i.e it saves memory). 

 

Understanding problem without static variable 

1. class Student{ 

2. int rollno; 

3. String name; 

4. String 

college="ITS"; 5. } 

Example of static variable 

//Program of static variable 

class Student8{ 

int rollno; 



JAVA PROGRAMMING Page 28  

String name; 

static String college 

="ITS"; Student8(int 

r,String n){ rollno = r; 

name = n; 

} 

void display (){System.out.println(rollno+" "+name+" "+college);} 

public static void main(String args[]){ 

Student8 s1 = new Student8(111,"Karan"); 

Student8 s2 = new Student8(222,"Aryan"); 

 

s1.display(); 

s2.display(); 

} } 

Output:111 Karan ITS 

222 Aryan ITS 

 

Java static method 

 

If you apply static keyword with any method, it is known as static method. 

 

o A static method belongs to the class rather than object of a class. 

o A static method can be invoked without the need for creating an instance of a class. 

o static method can access static data member and can change the value of it. 

 

Example of static method 

//Program of changing the common property of all objects(static field). 

 

class Student9{ 

int rollno; 

String name; 

static String college = "ITS"; 

static void change(){ 

college = "BBDIT"; 

} 

Student9(int r, String n){ 

rollno = r; 

name = n; 



JAVA PROGRAMMING Page 29  

Output:111 Karan BBDIT 

222 Aryan BBDIT 

333 Sonoo BBDIT 

Output: static block is invoked 

Hello main 

} 

void display (){System.out.println(rollno+" "+name+" "+college);} 

public static void main(String args[]){ 

Student9.change(); 

Student9 s1 = new Student9 (111,"Karan"); 

Student9 s2 = new Student9 (222,"Aryan"); 

Student9 s3 = new Student9 (333,"Sonoo"); 

s1.display(); 

s2.display(); 

s3.display(); 

} } 

 

Java static block 

 

o Is used to initialize the static data member. 

o It is executed before main method at the time of class loading. 

 

Example of static block 

class A2{ 

static{System.out.println("static block is invoked");} 

public static void main(String args[]){ 

System.out.println("Hello main"); 

} } 

 

Access Control 

 

Access Modifiers in java 

 

There are two types of modifiers in java: access modifiers and non-access modifiers. 

 

The access modifiers in java specifies accessibility (scope) of a data member, method, constructor 

or class. 

There are 4 types of java access modifiers: 



JAVA PROGRAMMING Page 30  

1. private 

2. default 

3. protected 

4. public 

 

private access modifier 

The private access modifier is accessible only within class. 

 

Simple example of private access modifier 

In this example, we have created two classes A and Simple. A class contains private data 

member and private method. We are accessing these private members from outside the class, 

so there is compile time error. 

class A{ 

private int data=40; 

private void msg(){System.out.println("Hello java");} } 

public class Simple{ 

public static void main(String args[]){ 

A obj=new A(); 

System.out.println(obj.data);//Compile Time Error 

obj.msg();//Compile Time Error 

} } 

 

2) default access modifier 

If you don't use any modifier, it is treated as default bydefault. The default modifier is 

accessible only within package. 

Example of default access modifier 

In this example, we have created two packages pack and mypack. We are accessing the A 

class from outside its package, since A class is not public, so it cannot be accessed from outside 

the package. 

//save by A.java 

package pack; 

class A{ 

void msg(){System.out.println("Hello");} 

} 

 

//save by B.java 

package mypack; 

import pack.*; 



JAVA PROGRAMMING Page 31  

class B{ 

public static void main(String args[]){ 

A obj = new A();//Compile Time Error 

obj.msg();//Compile Time Error } } 

 

In the above example, the scope of class A and its method msg() is default so it cannot be 

accessed from outside the package. 

3) protected access modifier 

 

The protected access modifier is accessible within package and outside the package but through 

inheritance only. 

 

The protected access modifier can be applied on the data member, method and constructor. It can't 

be applied on the class. 

Example of protected access modifier 

 

In this example, we have created the two packages pack and mypack. The A class of pack 

package is public, so can be accessed from outside the package. But msg method of this package  

is declared as protected, so it can be accessed from outside the class only through inheritance. 

 

//save by A.java 

package pack; 

public class A{ 

protected void msg(){System.out.println("Hello");} } 

//save by B.java 

package mypack; 

import pack.*; 

class B extends A{ 

public static void main(String args[]){ 

B obj = new B(); 

obj.msg(); 

} } 

 Output:Hello  

 

4) public access modifier 

The public access modifier is accessible everywhere. It has the widest scope among all other 

modifiers. 



JAVA PROGRAMMING Page 32  

Example of public access modifier 

//save by A.java 

package pack; 

public class A{ 

public void msg(){System.out.println("Hello");} } 

//save by B.java 

package mypack; 

import pack.*; 

class B{ 

public static void main(String args[]){ 

A obj = new A(); 

obj.msg(); 

} } 

 Output:Hello  

 

Understanding all java access modifiers 

 

Let's understand the access modifiers by a simple table. 

 

 

Access within within outside package by outside 

Modifier class package subclass only package 

 

Private 

 

Y 

 

N 

 

N 

 

N 

 

Default Y Y N N 

 

Protected Y Y Y N 

 

Public Y Y Y Y 

 

 

this keyword in java 

 

Usage of java this keyword 

 

Here is given the 6 usage of java this keyword. 

 

1. this can be used to refer current class instance variable. 

2. this can be used to invoke current class method (implicitly) 

3. this() can be used to invoke current class constructor. 



JAVA PROGRAMMING Page 33  

4. this can be passed as an argument in the method call. 

5. this can be passed as argument in the constructor call. 

6. this can be used to return the current class instance from the method. 

 

class Student{ 

int rollno; 

String name; 

float fee; 

Student(int rollno,String name,float fee){ 

this.rollno=rollno; 

this.name=name; 

this.fee=fee; 

} 

void display(){System.out.println(rollno+" "+name+" "+fee);} 

} 

class TestThis2{ 

public static void main(String args[]){ 

Student s1=new Student(111,"ankit",5000f); 

Student s2=new Student(112,"sumit",6000f); 

s1.display(); 

s2.display(); 

}} 

 

Output: 

111 ankit 5000 

112 sumit 6000 

 

 

Difference between constructor and method in java 

 

 

 

 

 

 

Java Constructor Java Method 

 

Constructor is used to initialize the state of an object. 

 

Method is used to expose behaviour 

of an object. 

Constructor must not have return type. Method must have return type. 

Constructor is invoked implicitly. Method is invoked explicitly. 

The java compiler provides a default constructor if you 

don't have any constructor. 

Method is not provided by compiler in 

any case. 

Constructor name must be same as the class name. Method name may or may not be 



 

 

 

 

same as class name. 

There are many differences between constructors and methods. They are given belo 

 

 

 

Constructor Overloading in Java 

 

Constructor overloading is a technique in Java in which a class can have any number of 

constructors that differ in parameter lists.The compiler differentiates these constructors by 

taking into account the number of parameters in the list and their type. 

Example of Constructor Overloading 

class Student5{ 

int id; String 

name; int 

age; 

Student5(int i,String n){ 

id = i; 

name = n; 

} 

Student5(int i,String n,int a){ 

id = i; 

name = n; 

age=a; 

} 

void display(){System.out.println(id+" "+name+" "+age);} 

 

public static void main(String args[]){ 

Student5 s1 = new Student5(111,"Karan"); 

Student5 s2 = new Student5(222,"Aryan",25); 

s1.display(); 

s2.display(); 

} 

} 

 

Output: 

 

 
 

JAVA PROGRAMMING Page 31 

 



JAVA PROGRAMMING Page 32  

22 

33 

 
 

Method Overloading in java 

 

If a class has multiple methods having same name but different in parameters, it is known 

as Method Overloading. 

 

If we have to perform only one operation, having same name of the methods increases the 

readability of the program. 

 

 

 

Method Overloading: changing no. of arguments 

 

In this example, we have created two methods, first add() method performs addition of two 

numbers and second add method performs addition of three numbers. 

 

In this example, we are creating static methods so that we don't need to create instance for calling 

methods. 

 

class Adder{ 

static int add(int a,int b){return a+b;} 

static int add(int a,int b,int c){return a+b+c;} 

} 

class TestOverloading1{ 

public static void main(String[] args){ 

System.out.println(Adder.add(11,11)); 

System.out.println(Adder.add(11,11,11)); 

}} 

 

Output: 

 

Method Overloading: changing data type of arguments 

 

In this example, we have created two methods that differs in data type. The first add method 

receives two integer arguments and second add method receives two double arguments. 

111 Karan 0 

222 Aryan 25 



JAVA PROGRAMMING Page 33  

Factorial of 5 is: 120 

Recursion in Java 

Recursion in java is a process in which a method calls itself continuously. A method in java that 
calls itself is called recursive method. 

 

 

Java Recursion Example 1: Factorial Number 

 

public class RecursionExample3 { 

static int factorial(int n){ 

if (n == 1) 

return 1; 

else 

return(n * factorial(n-1)); 

} } 

public static void main(String[] args) { 

System.out.println("Factorial of 5 is: "+factorial(5)); 

} } 

 

Output: 

 

Java Garbage Collection 

 

In java, garbage means unreferenced objects. 

 

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other 

words, it is a way to destroy the unused objects. 

 

To do so, we were using free() function in C language and delete() in C++. But, in java it is 

performed automatically. So, java provides better memory management. 

Advantage of Garbage Collection 

o It makes java memory efficient because garbage collector removes the unreferenced 

objects from heap memory. 

o It is automatically done by the garbage collector(a part of JVM) so we don't need to make 

extra efforts. 

gc() method 



JAVA PROGRAMMING Page 34  

object is garbage collected 

object is garbage collected 

The gc() method is used to invoke the garbage collector to perform cleanup processing. The 

gc() is found in System and Runtime classes. 

 

public static void gc(){} 

 

Simple Example of garbage collection in java 

public class TestGarbage1{ 

public void finalize(){System.out.println("object is garbage collected");} 

public static void main(String args[]){ 

TestGarbage1 s1=new TestGarbage1(); 

TestGarbage1 s2=new TestGarbage1(); 

s1=null; 

s2=null; 

System.gc(); 

} } 

Java String 

string is basically an object that represents sequence of char values. An array of characters works 
same as java string. For example: 

 

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'}; 

2. String s=new String(ch); 

ssame as: 

1. String s="javatpoint"; 

2. Java String class provides a lot of methods to perform operations on string such as 

compare(), concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() 

etc. 

3. The java.lang.String class 
implements Serializable, Comparable and CharSequence interfaces. 

 

 

 

 

 

 

 

 

 

CharSequence Interface 



JAVA PROGRAMMING Page 35  

The CharSequence interface is used to represent sequence of characters. It is implemented by 

String, StringBuffer and StringBuilder classes. It means, we can create string in java by using 

these 3 classes. 

 

 

 

 

 

 

 

The java String is immutable i.e. it cannot be changed. Whenever we change any 

string, a new instance is created. For mutable string, you can use StringBuffer and StringBuilder 

classes. 

There are two ways to create String object: 

1. By string literal 

2. By new keyword 

 

String Literal 

 

Java String literal is created by using double quotes. For Example: 

 

1. String s="welcome"; 

 

Each time you create a string literal, the JVM checks the string constant pool first. If the string 

already exists in the pool, a reference to the pooled instance is returned. If string doesn't exist in 
the pool, a new string instance is created and placed in the pool. For example: 

 

1. String s1="Welcome"; 

2. String s2="Welcome";//will not create new instance 

 

By new keyword 

1. String s=new String("Welcome");//creates two objects and one reference variable 

 

In such case, JVM will create a new string object in normal (non pool) heap memory and the 

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the object 

in heap (non pool). 

 
Java String Example 

public class StringExample{ 

public static void main(String args[]){ 

String s1="java";//creating string by java string literal 

char ch[]={'s','t','r','i','n','g','s'}; 

String s2=new String(ch);//converting char array to string 

String s3=new String("example");//creating java string by new keyword 

System.out.println(s1); 

System.out.println(s2); 

System.out.println(s3); 
}} 

 java  



JAVA PROGRAMMING Page 36  

 
Immutable String in Java 

 

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable. 

Once string object is created its data or state can't be changed but a new string object is created. 

Let's try to understand the immutability concept by the example given below: 

class Testimmutablestring{ 

public static void main(String args[]){ 

String s="Sachin"; 

s.concat(" Tendulkar");//concat() method appends the string at the end 
System.out.println(s);//will print Sachin because strings are immutable objects 

} } 

 Output:Sachin  

class Testimmutablestring1{ 

public static void main(String args[]){ 

String s="Sachin"; 

s=s.concat(" Tendulkar"); 

System.out.println(s); 
} } Output:Sachin Tendulkar 

strings 

example 



JAVA PROGRAMMING Page 37  

Programmer salary is:40000.0 

 

 

 

 

UNIT-II 

Inheritance in Java 

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors 
of parent object. Inheritance represents the IS-A relationship, also known as parent- 

child relationship. 

 

Why use inheritance in java 

o For Method Overriding (so runtime polymorphism can be achieved). 

o For Code Reusability. 

 
Syntax of Java Inheritance 

1. class Subclass-name extends Superclass-name 

2. { 

3. //methods and fields 

4. } 

 

The extends keyword indicates that you are making a new class that derives from an existing 

class. The meaning of "extends" is to increase the functionality. 

 

 

 

 

 

 

 

 

 

 

 

 

class Employee{ 

float salary=40000; 

} 

class Programmer extends Employee{ 

int bonus=10000; 

public static void main(String args[]){ 

Programmer p=new Programmer(); 

System.out.println("Programmer salary is:"+p.salary); 

System.out.println("Bonus of Programmer is:"+p.bonus); 
} } 

 



JAVA PROGRAMMING Page 38  

  Bonus of programmer is:10000  

 

 

 

Types of inheritance in java 

 

 

 

 

 

 

 

 

 

Single Inheritance Example 

 

File: TestInheritance.java 

 
class Animal{ 

void eat(){System.out.println("eating...");} 

} 

class Dog extends Animal{ 

void bark(){System.out.println("barking...");} 

} 

class TestInheritance{ 

public static void main(String args[]){ 

Dog d=new Dog(); 
d.bark(); 

d.eat(); 

}} 
Output: 

barking... 

eating... 

 

Multilevel Inheritance Example 

 

File: TestInheritance2.java 

 

class Animal{ 

void eat(){System.out.println("eating...");} 

} 

class Dog extends Animal{ 

void bark(){System.out.println("barking...");} 

} 

class BabyDog extends Dog{ 

void weep(){System.out.println("weeping...");} 

} 

class TestInheritance2{ 



JAVA PROGRAMMING Page 39  

weeping... 

barking... 

eating... 

meowing... 

eating... 

public static void main(String args[]){ 

BabyDog d=new BabyDog(); 

d.weep(); 

d.bark(); 

d.eat(); 

}} 

 

Output: 

 

 

Hierarchical Inheritance Example 

File: TestInheritance3.java 

 
class Animal{ 

void eat(){System.out.println("eating...");} 

} 

class Dog extends Animal{ 

void bark(){System.out.println("barking...");} 

} 

class Cat extends Animal{ 

void meow(){System.out.println("meowing...");} 

} 

class TestInheritance3{ 

public static void main(String args[]){ 

Cat c=new Cat(); 
c.meow(); 

c.eat(); 

//c.bark();//C.T.Error 

}} 

 

Output: 

 



JAVA PROGRAMMING Page 40  

 

 

 

 

 
super keyword in java 

 

The super keyword in java is a reference variable which is used to refer immediate parent class 

object. 

 

Whenever you create the instance of subclass, an instance of parent class is created implicitly 

which is referred by super reference variable. 

Usage of java super Keyword 

 

1. super can be used to refer immediate parent class instance variable. 

2. super can be used to invoke immediate parent class method. 

3. super() can be used to invoke immediate parent class constructor. 

 

super is used to refer immediate parent class instance variable. 

 

class Animal{ 

String color="white"; 

} 

class Dog extends Animal{ 

String color="black"; 

void printColor(){ 

System.out.println(color);//prints color of Dog class 

System.out.println(super.color);//prints color of Animal class 

} 

} 

class TestSuper1{ 

public static void main(String args[]){ 

Dog d=new Dog(); 

Member access and Inheritance 

 
A subclass includes all of the members of its super class but it cannot access those members of 

the super class that have been declared as private. Attempt to access a private variable would 

cause compilation error as it causes access violation. The variables declared as private, is only 

accessible by other members of its own class. Subclass have no access to it. 



JAVA PROGRAMMING Page 41  

black 

white 

d.printColor(); 

}} 

 

Output: 

 

Final Keyword in Java 

 

The final keyword in java is used to restrict the user. The java final keyword can be used in 

many context. Final can be: 

 

1. variable 

2. method 

3. class 

 

The final keyword can be applied with the variables, a final variable that have no value it is called 

blank final variable or uninitialized final variable. It can be initialized in the constructor only. The 

blank final variable can be static also which will be initialized in the static block only. 

Object class in Java 

 

The Object class is the parent class of all the classes in java by default. In other words, it is the 

topmost class of java. 

 

The Object class is beneficial if you want to refer any object whose type you don't know. Notice 

that parent class reference variable can refer the child class object, know as upcasting. 

 

Let's take an example, there is getObject() method that returns an object but it can be of any type 

like Employee,Student etc, we can use Object class reference to refer that object. For example: 

 

1. Object obj=getObject();//we don't know what object will be returned from this method 

 

The Object class provides some common behaviors to all the objects such as object can be 

compared, object can be cloned, object can be notified etc. 

Method Overriding in Java 

 

If subclass (child class) has the same method as declared in the parent class, it is known 

as method overriding in java. 



JAVA PROGRAMMING Page 42  

Output: 

SBI Rate of Interest: 8 

Usage of Java Method Overriding 

o Method overriding is used to provide specific implementation of a method that is already 
provided by its super class. 

o Method overriding is used for runtime polymorphism 

 

Rules for Java Method Overriding 

1. method must have same name as in the parent class 

2. method must have same parameter as in the parent class. 

3. must be IS-A relationship (inheritance). 

 

 

 

 
Example of method overriding 

Class Vehicle{ 

void run(){System.out.println("Vehicle is running");} 

} 

class Bike2 extends Vehicle{ 

void run(){System.out.println("Bike is running safely");} 

public static void main(String args[]){ 

Bike2 obj = new Bike2(); 
obj.run(); 

} 

 

Output:Bike is running safely 

 
1. class Bank{ 

int getRateOfInterest(){return 0;} 

} 

class SBI extends Bank{ 

int getRateOfInterest(){return 8;} 

} 

class ICICI extends Bank{ 

int getRateOfInterest(){return 7;} 

} 

class AXIS extends Bank{ 

int getRateOfInterest(){return 9;} 

} 

class Test2{ 

public static void main(String args[]){ 
SBI s=new SBI(); 

ICICI i=new ICICI(); 

AXIS a=new AXIS(); 

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest()); 

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest()); 

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest()); 

} } 

 



JAVA PROGRAMMING Page 43  

running safely.. 

 
 

Abstract class in Java 

 

A class that is declared with abstract keyword is known as abstract class in java. It can have 

abstract and non-abstract methods (method with body). It needs to be extended and its method 

implemented. It cannot be instantiated. 

Example abstract class 

1.   abstract class A{} 

 

abstract method 

1. abstract void printStatus();//no body and abstract 

 

Example of abstract class that has abstract method 

abstract class Bike{ 

abstract void run(); 

} 

class Honda4 extends Bike{ 

void run(){System.out.println("running safely..");} 

public static void main(String args[]){ 

Bike obj = new Honda4(); 

obj.run(); 

} 

1. } 

Interface in Java 

An interface in java is a blueprint of a class. It has static constants and abstract methods. 

 

The interface in java is a mechanism to achieve abstraction. There can be only abstract methods 

in the java interface not method body. It is used to achieve abstraction and multiple inheritance in 

Java. 

 

Java Interface also represents IS-A relationship. 

It cannot be instantiated just like abstract class. 

There are mainly three reasons to use interface. They are given below. 

o It is used to achieve abstraction. 

o By interface, we can support the functionality of multiple inheritance. 

o It can be used to achieve loose coupling. 

ICICI Rate of Interest: 7 

AXIS Rate of Interest: 9 



JAVA PROGRAMMING Page 44  

 

 

 

Internal addition by compiler 

 

 

 

 

 

Understanding relationship between classes and interfaces 

 

 

 

 

 

 

//Interface declaration: by first user 

interface Drawable{ 

void draw(); 

} 

//Implementation: by second user 

class Rectangle implements Drawable{ 

public void draw(){System.out.println("drawing rectangle");} 

} 

class Circle implements Drawable{ 

public void draw(){System.out.println("drawing circle");} 

} 

//Using interface: by third user 

class TestInterface1{ 

public static void main(String args[]){ 

Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable() 

d.draw(); 
}} 

Output:drawing circle 

 

 

Multiple inheritance in Java by interface 

 

 

 

 

 

 

 

 

 

 

 

interface Printable{ 



JAVA PROGRAMMING Page 45  

void print(); 

} 

interface Showable{ 

void show(); 

} 

class A7 implements Printable,Showable{ 

public void print(){System.out.println("Hello");} 

public void show(){System.out.println("Welcome");} 

public static void main(String args[]){ 

A7 obj = new A7(); 

obj.print(); 

obj.show(); 

} } 

 

 Output:Hello 
Welcome 

 
Abstract class 

  
Interface 

   

1) Abstract class can have abstract 

and non-abstract methods. 

Interface can have only abstract methods. Since 

Java 8, it can have  default  and  static  

methods also. 

 

2) Abstract class doesn't support 

multiple inheritance. 

Interface supports multiple inheritance. 

3) Abstract class can have final, non- 

final, static and non-static variables. 

Interface has only static and final variables. 

4) Abstract class can provide the 

implementation of interface. 

Interface can't provide the implementation of 

abstract class. 

5) The abstract keyword is used to 

declare abstract class. 

The interface keyword is 

interface. 

used to declare 

 6) Example: 

public abstract 

public abstract 

} 

 

class 

void 

 

Shape{ 

draw(); 

Example: 

public interface 
void 

} 

  

Drawable{ 

draw(); 

 

Java Inner Classes 

Java inner class or nested class is a class which is declared inside the class or interface. 

 

We use inner classes to logically group classes and interfaces in one place so that it can be more 

readable and maintainable. 

 
Syntax of Inner class 

1. class Java_Outer_class{ 

2. //code 

3. class Java_Inner_class{ 

4. //code 

5. } } 



JAVA PROGRAMMING Page 46  

Advantage of java inner classes 

 

There are basically three advantages of inner classes in java. They are as follows: 

 

1) Nested classes represent a special type of relationship that is it can access all the members 

(data members and methods) of outer class including private. 

 

2) Nested classes are used to develop more readable and maintainable code because it 

logically group classes and interfaces in one place only. 

 

3) Code Optimization: It requires less code to write. 

 

Difference between nested class and inner class in Java 

 

Inner class is a part of nested class. Non-static nested classes are known as inner classes. 

 

Types of Nested classes 

 

There are two types of nested classes non-static and static nested classes.The non-static nested 

classes are also known as inner classes. 

 

o Non-static nested class (inner class) 

1. Member inner class 

2. Anonymous inner class 

3. Local inner class 

o Static nested class 

 

Java Package 

A java package is a group of similar types of classes, interfaces and sub-packages. 

Package in java can be categorized in two form, built-in package and user-defined package. 

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc. 

Advantage of Java Package 

1) Java package is used to categorize the classes and interfaces so that they can be easily 

maintained. 

 

2) Java package provides access protection. 

 

3) Java package removes naming collision. 

 

package mypack; 

public class Simple{ 

public static void main(String args[]){ 

System.out.println("Welcome to package"); 
} } 



JAVA PROGRAMMING Page 47  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to compile java package 

If you are not using any IDE, you need to follow the syntax given below: 

javac -d directory javafilename 

How to run java package program 

 

To Compile: javac -d . Simple.java 

To Run: java mypack.Simple 

 

Using fully qualified name 

 

Example of package by import fully qualified name 

 

//save by A.java 

package pack; 

public class A{ 
public void msg(){System.out.println("Hello");} } 

//save by B.java 

package mypack; 

class B{ 

public static void main(String args[]){ 

pack.A obj = new pack.A();//using fully qualified name 

obj.msg(); 
} 

} 

 Output:Hello 



JAVA PROGRAMMING Page 48  

 

Exception Handling 

The exception handling in java is one of the powerful mechanism  to  handle  the  runtime  

errors so that normal flow of the application can be maintained. 

 

What is exception 

 

In java, exception is an event that disrupts the normal flow of the program. It is an object which is 

thrown at runtime. 

 

Advantage of Exception Handling 

 

The core advantage of exception handling is to maintain the normal flow of the application. 

Exception normally disrupts the normal flow of the application that is why we use exception 

handling. 

Types of Exception 

 

There are mainly two types of exceptions: checked and unchecked where error is considered as 

unchecked exception. The sun microsystem says there are three types of exceptions: 

1. Checked Exception 

2. Unchecked Exception 

3. Error 

 

Difference between checked and unchecked exceptions 

 

1) Checked Exception: The classes that extend Throwable class except RuntimeException 

and Error are known as checked exceptions e.g.IOException, SQLException etc. Checked 

exceptions are checked at compile-time. 

2) Unchecked Exception: The classes that extend RuntimeException are known as 

unchecked exceptions e.g. ArithmeticException, NullPointerException, 

ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked at compile-

time rather they are checked at runtime. 

3) Error: Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, 

AssertionErroretc. 



JAVA PROGRAMMING Page 49  

Hierarchy of Java Exception classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Checked and UnChecked Exceptions 



JAVA PROGRAMMING Page 50  

 

Java try block 

 

Java try block is used to enclose the code that might throw an exception. It must be used within 
the method. 

 

Java try block must be followed by either catch or finally block. 

 

Syntax of java try-catch 

 

1. try{ 

2. //code that may throw exception 

3. }catch(Exception_class_Name ref){} 

Syntax of try-finally block 

1. try{ 
2. //code that may throw exception 

3. }finally{} 

 

Java catch block 

 

Java catch block is used to handle the Exception. It must be used after the try block only. 

You can use multiple catch block with a single try. 

Problem without exception handling 

 

Let's try to understand the problem if we don't use try-catch block. 

 
public class Testtrycatch1{ 

public static void main(String args[]){ 

int data=50/0;//may throw exception 

System.out.println("rest of the code..."); 

} } 

Output: 

 Exception in thread main java.lang.ArithmeticException:/ by zero  

 

As displayed in the above example, rest of the code is not executed (in such case, rest of the 

code... statement is not printed). 

 

There can be 100 lines of code after exception. So all the code after exception will not be 

executed. 

 

Solution by exception handling 

 

Let's see the solution of above problem by java try-catch block. 

 

public class Testtrycatch2{ 



JAVA PROGRAMMING Page 51  

Exception in thread main java.lang.ArithmeticException:/ by zero 

rest of the code... 

Output:task1 completed 

rest of the code... 

public static void main(String args[]){ 

try{ 

int data=50/0; 

}catch(ArithmeticException e){System.out.println(e);} 

System.out.println("rest of the code..."); 
} } 

1. Output: 

 

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code... 

statement is printed. 

 

Java Multi catch block 

 

If you have to perform different tasks at the occurrence of different Exceptions, use java multi 

catch block. 

 

Let's see a simple example of java multi-catch block. 

 

1. public class TestMultipleCatchBlock{ 

2. public static void main(String args[]){ 

3. try{ 

4. int a[]=new int[5]; 
5. a[5]=30/0; 

6. } 

7. catch(ArithmeticException e){System.out.println("task1 is completed");} 

8. catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed"); 

9. } 

10. catch(Exception e){System.out.println("common task completed"); 

11. } 

12. System.out.println("rest of the code..."); 
13. } } 

 

 

 

Java nested try example 

 

Let's see a simple example of java nested try block. 

 

class Excep6{ 

public static void main(String args[]){ 

try{ 

try{ 
System.out.println("going to divide"); 

int b =39/0; 

}catch(ArithmeticException e){System.out.println(e);} 

 

try{ 



JAVA PROGRAMMING Page 52  

Output:5 

finally block is always executed 

rest of the code... 

int a[]=new int[5]; 

a[5]=4; 

}catch(ArrayIndexOutOfBoundsException e){System.out.println(e);} 

System.out.println("other statement); 

}catch(Exception e){System.out.println("handeled");} 

System.out.println("normal flow.."); 

} 

1. } 

Java finally block 

 

Java finally block is a block that is used to execute important code such as closing connection, 
stream etc. 

 

Java finally block is always executed whether exception is handled or not. 

Java finally block follows try or catch block. 

 

 

Usage of Java finally 

 

Case 1 

Let's see the java finally example where exception doesn't occur. 

class TestFinallyBlock{ 

public static void main(String args[]){ 
try{ 

int data=25/5; 

System.out.println(data); 
} 

catch(NullPointerException e){System.out.println(e);} 

finally{System.out.println("finally block is always executed");} 

System.out.println("rest of the code..."); 
} 

} 

 

Java throw keyword 

 

The Java throw keyword is used to explicitly throw an exception. 

 

We can throw either checked or uncheked exception in java by throw keyword. The throw 

keyword is mainly used to throw custom exception. We will see custom exceptions later. 

 

The syntax of java throw keyword is given below. 

 

1. throw exception; 



JAVA PROGRAMMING Page 53  

 

 

 

Java throw keyword example 

 

In this example, we have created the validate method that takes integer value as a parameter. If 

the age is less than 18, we are throwing the ArithmeticException otherwise print a message 

welcome to vote. 

 

1. public class TestThrow1{ 

static void validate(int age){ 

if(age<18) 

throw new ArithmeticException("not valid"); 

else 

System.out.println("welcome to vote"); 

} 

public static void main(String args[]){ 

validate(13); 
System.out.println("rest of the code..."); 

}  } 

 

Output: 

 

 Exception in thread main java.lang.ArithmeticException:not valid  

Java throws keyword 

 

The Java throws keyword is used to declare an exception. It gives an information to the 

programmer that there may occur an exception so it is better for the programmer to provide the 

exception handling code so that normal flow can be maintained. 

 

Exception Handling is mainly used to handle the checked exceptions. If there occurs any 
unchecked exception such as NullPointerException, it is programmers fault that he is not 

performing check up before the code being used. 

 

Syntax of java throws 
1. return_type method_name() throws exception_class_name{ 

2. //method code 

3. } 

4. 

 

Java throws example 

 

Let's see the example of java throws clause which describes that checked exceptions can be 

propagated by throws keyword. 

 

import java.io.IOException; 

class Testthrows1{ 

void m()throws IOException{ 

throw new IOException("device error");//checked exception 



JAVA PROGRAMMING Page 54  

exception handled 

normal flow... 

} 

void n()throws IOException{ 

m(); 

} 

void p(){ 

try{ 

n(); 

}catch(Exception e){System.out.println("exception handled");} 

} 

public static void main(String args[]){ 

Testthrows1 obj=new Testthrows1(); 

obj.p(); 

System.out.println("normal flow..."); } } 

Output: 

 

Java Custom Exception 

 

If you are creating your own Exception that is known as custom exception or user-defined 
exception. Java custom exceptions are used to customize the exception according to user need. 

 

By the help of custom exception, you can have your own exception and message. 

Let's see a simple example of java custom exception. 

class InvalidAgeException extends Exception{ 

InvalidAgeException(String s){ 
super(s); 

} } 

class TestCustomException1{ 

static void validate(int age)throws InvalidAgeException{ 

if(age<18) 

throw new InvalidAgeException("not valid"); 

else 

System.out.println("welcome to vote"); 

} 
public static void main(String args[]){ 

try{ 

validate(13); 
}catch(Exception m){System.out.println("Exception occured: "+m);} 

 

System.out.println("rest of the code..."); 

} } 

 

Output:Exception occured: InvalidAgeException:not valid rest of the code... 



JAVA PROGRAMMING Page 55  

UNIT-III 

 

Java - Files and I/O 

The java.io package contains nearly every class you might ever need to perform input and output 

(I/O) in Java. All these streams represent an input source and an output destination. The stream  

in the java.io package supports many data such as primitives, object, localized characters, etc. 

Stream 

A stream can be defined as a sequence of data. There are two kinds of Streams − 

 

• InPutStream − The InputStream is used to read data from a source. 

 

• OutPutStream − The OutputStream is used for writing data to a destination. 

 

 

Java provides strong but flexible support for I/O related to files and networks but this tutorial 

covers very basic functionality related to streams and I/O. We will see the most commonly used 

examples one by one − 

Byte Streams 

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many 

classes     related     to     byte     streams     but     the     most     frequently     used      classes  

are, FileInputStream and FileOutputStream. Following is an example which makes use of 

these two classes to copy an input file into an output file − 

Example 



JAVA PROGRAMMING Page 56  

import java.io.*; 
 

public class CopyFile { 
 

public static void main(String args[]) throws IOException { 

FileInputStream in = null; 

FileOutputStream out = null; 

try { 

in = new FileInputStream("input.txt"); 
 

out = new FileOutputStream("output.txt"); 

int c; 

while ((c = in.read()) != -1) { 

 



JAVA PROGRAMMING Page 57  

This is test for copy file. 

 
 

Now let's have a file input.txt with the following content − 

 

As a next step, compile the above program and execute it, which will result in creating output.txt 

file with the same content as we have in input.txt. So let's put the above code in CopyFile.java 

file and do the following − 

 
Character Streams 

Java Byte streams  are   used   to   perform   input   and   output   of   8-bit    bytes,    whereas 

Java Character streams are used to perform input and output for 16-bit unicode. Though there 

are   many  classes  related  to   character  streams   but   the   most   frequently   used   classes 

are, FileReader and FileWriter. Though internally FileReader uses FileInputStream and 

FileWriter uses FileOutputStream but here the major difference is that FileReader reads two 

bytes at a time and FileWriter writes two bytes at a time. 

We can re-write the above example, which makes the use of these two classes to copy an input 

file (having unicode characters) into an output file − 

Example 

$javac CopyFile.java 

$java CopyFile 

out.write(c); 
 

} 
 

}finally { 
 

if (in != null) { 
 

in.close(); 
 

} 
 

if (out != null) { 

out.close(); 

}} }} 



JAVA PROGRAMMING Page 58  

import java.io.*; 
 

public class CopyFile { 
 

public static void main(String args[]) throws IOException { 

 



JAVA PROGRAMMING Page 59  

This is test for copy file. 

 
 

Now let's have a file input.txt with the following content − 

 

As a next step, compile the above program and execute it, which will result in creating output.txt 

file with the same content as we have in input.txt. So let's put the above code in CopyFile.java  

file and do the following − 

 
Standard Streams 

All the programming languages provide support for standard I/O where the user's program can 

take input from a keyboard and then produce an output on the computer screen. Java provides the 

following three standard streams − 

• Standard Input − This is used to feed the data to user's program and usually a keyboard 

is used as standard input stream and represented asSystem.in. 

$javac CopyFile.java 

$java CopyFile 

FileReader in = null; 

FileWriter out = null; 

try { 

in = new FileReader("input.txt"); 

out = new FileWriter("output.txt"); 

int c; 

while ((c = in.read()) != -1) { 

out.write(c);} 

}finally { 
 

if (in != null) { 
 

in.close();} 
 

if (out != null) { 

out.close(); 

}} }} 



JAVA PROGRAMMING Page 60  

public class ReadConsole { 
 

public static void main(String args[]) throws IOException { 

InputStreamReader cin = null; 

try { 
 

cin = new InputStreamReader(System.in); 

System.out.println("Enter characters, 'q' to quit."); 

char c; 

do { 
 

c = (char) cin.read(); 

System.out.print(c); 

} while(c != 'q'); 
 

}finally { 
 

if (cin != null) { 
 

cin.close(); 
 

} } }} 

• Standard Output − This is used to output the data produced by the user's program and 

usually  a  computer  screen  is   used   for   standard   output   stream  and   represented 

as System.out. 

• Standard Error − This is used to output the error data produced by the user's program 

and  usually  a  computer  screen  is  used  for  standard  error  stream  and  represented  

as System.err. 

Following is a simple program, which creates InputStreamReader to read standard input stream 

until the user types a " 

Example 

import java.io.*; 

 

 

This program continues to read and output the same character until we press 'q' − 



JAVA PROGRAMMING Page 61  

$javac ReadConsole.java 

$java ReadConsole 

 



JAVA PROGRAMMING Page 62  

InputStream f = new FileInputStream("C:/java/hello"); 

 
Reading and Writing Files 

As described earlier, a stream can be defined as a sequence of data. The InputStream is used to 

read data from a source and the OutputStream is used for writing data to a destination. 

Here is a hierarchy of classes to deal with Input and Output streams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two important streams are FileInputStream and FileOutputStream 

 

FileInputStream 

This stream is used for reading data from the files. Objects can be created using the 

keyword new and there are several types of constructors available. 

Following constructor takes a file name as a string to create an input stream object to read the 

file − 

Enter characters, 'q' to quit. 

1 

1 

e 

e 

q 

q 



JAVA PROGRAMMING Page 63  

File f = new File("C:/java/hello"); 

InputStream f = new FileInputStream(f); 

OutputStream f = new FileOutputStream("C:/java/hello") 

Following constructor takes a file object to create an input stream object to read the file. First we 

create a file object using File() method as follows − 

Once you have InputStream object in hand, then there is a list of helper methods which can be 

used to read to stream or to do other operations on the stream. 

• ByteArrayInputStream 

 

• DataInputStream 

FileOutputStream 

FileOutputStream is used to create a file and write data into it. The stream would create a file, if 

it doesn't already exist, before opening it for output. 

Here are two constructors which can be used to create a FileOutputStream object. 

 

Following constructor takes a file name as a string to create an input stream object to write the 

file − 

Following constructor takes a file object to create an output stream object to write the file. First, 

we create a file object using File() method as follows − 

 

Once you have OutputStream object in hand, then there is a list of helper methods, which can be 

used to write to stream or to do other operations on the stream. 

• ByteArrayOutputStream 

• DataOutputStream 

 

Example 

 

Following is the example to demonstrate InputStream and OutputStream − 

 

import java.io.*; 

 

public class fileStreamTest { 

 

public static void main(String args[]) { 

try { 

File f = new File("C:/java/hello"); 

OutputStream f = new FileOutputStream(f); 

https://www.tutorialspoint.com/java/java_bytearrayinputstream.htm
https://www.tutorialspoint.com/java/java_datainputstream.htm
https://www.tutorialspoint.com/java/java_bytearrayoutputstream.htm
https://www.tutorialspoint.com/java/java_dataoutputstream.htm


 

 

 

byte bWrite [] = {11,21,3,40,5}; 

 

OutputStream os = new FileOutputStream("test.txt"); 

for(int x = 0; x < bWrite.length ; x++) { 

os.write( bWrite[x] ); // writes the bytes} 

os.close(); 

InputStream is = new FileInputStream("test.txt"); 

int size = is.available(); 

for(int i = 0; i < size; i++) { 

System.out.print((char)is.read() + " "); } 

is.close(); 

 

} catch (IOException e) { 

System.out.print("Exception"); 

} }} 

 

Java.io.RandomAccessFile Class 

The Java.io.RandomAccessFile class file behaves like a large array of bytes stored in the file 

system.Instances of this class support both reading and writing to a random access file. 

Class declaration 

Following is the declaration for Java.io.RandomAccessFile class − 

 

public class RandomAccessFile 

extends Object 

implements DataOutput, DataInput, Closeable 

Class constructors 

S.N. Constructor & Description 

1 
 

RandomAccessFile(File file, String mode) 

 

This creates a random access file stream to read from, and optionally to write to, the file 

specified by the File argument. 

  

JAVA PROGRAMMING Page 83 

 



 

 

 

2 

 

 

 

RandomAccessFile(File file, String mode) 

 

This creates a random access file stream to read from, and optionally to write to, a file with 

the specified name. 

Methodsinherited 

This class inherits methods from the following classes − 

 

• Java.io.Object 

 

 

Java.io.File Class in Java 

The File class is Java’s representation of a file or directory path name. Because file and directory 

names have different formats on different platforms, a simple string is not adequate to name them. 

The File class contains several methods for working with the path name, deleting and renaming 

files, creating new directories, listing the contents of a directory, and determining several  

common attributes of files and directories. 

▪ It is an abstract representation of file and directory pathnames. 

▪ A pathname, whether abstract or in string form can be either absolute or relative. The parent 

of an abstract pathname may be obtained by invoking the getParent() method of this class. 

▪ First of all, we should create the File class object by passing the filename or directory name 

to it. A file system may implement restrictions to certain operations on the actual file- 

system object, such as reading, writing, and executing. These restrictions are collectively 

known as access permissions. 

▪ Instances of the File class are immutable; that is, once created, the abstract pathname 
represented by a File object will never change. 

How to create a File Object? 

A File object is created by passing in a String that represents the name of a file, or a String or 

another File object. For example, 

File a = new File("/usr/local/bin/geeks"); 

 

defines an abstract file name for the geeks file in directory /usr/local/bin. This is an absolute 
abstract file name. 

Program to check if a file or directory physically exist or not. 

// In this program, we accepts a file or directory name from 

// command line arguments. Then the program will check if 

// that file or directory physically exist or not and 

// it displays the property of that file or directory. 

*import java.io.File; 

 

// Displaying file property 

class fileProperty 
{ 

public static void main(String[] args) { 

 
 

JAVA PROGRAMMING Page 84 

 



 

File name :file.txt 

Path: file.txt 

Absolute path:C:\Users\akki\IdeaProjects\codewriting\src\file.txt 

Parent:null 

Exists :true 

Is writeable:true 

Is readabletrue 

Is a directory:false 

File Size in bytes 20 

//accept file name or directory name through command line args 

String fname =args[0]; 

 

//pass the filename or directory name to File object 

File f = new File(fname); 

 

//apply File class methods on File object 

System.out.println("File name :"+f.getName()); 

System.out.println("Path: "+f.getPath()); 

System.out.println("Absolute path:" +f.getAbsolutePath()); 

System.out.println("Parent:"+f.getParent()); 

System.out.println("Exists :"+f.exists()); 

if(f.exists()) 

{ 

System.out.println("Is writeable:"+f.canWrite()); 

System.out.println("Is readable"+f.canRead()); 

System.out.println("Is a directory:"+f.isDirectory()); 

System.out.println("File Size in bytes "+f.length()); 

} 

} 

} 

 

Output: 

 

Connceting to DB 

 

 

 

 

 

 

 

 

Multithreading 



 

 

Multithreading in java is a process of executing multiple threads simultaneously. 

 

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and 

multithreading, both are used to achieve multitasking. 

 

But we use multithreading than multiprocessing because threads share a common memory area. 

They don't allocate separate memory area so saves memory, and context-switching between the 

threads takes less time than process. 

 

Java Multithreading is mostly used in games, animation etc. 

 

Advantages of Java Multithreading 

 

1) It doesn't block the user because threads are independent and you can perform multiple 

operations at same time. 

 

2) You can perform many operations together so it saves time. 

 

3) Threads are independent so it doesn't affect other threads if exception occur in a single thread. 

 

Life cycle of a Thread (Thread States) 

 

A thread can be in one of the five states. According to sun, there is only 4 states in thread life 

cycle in java new, runnable, non-runnable and terminated. There is no running state. 

 

But for better understanding the threads, we are explaining it in the 5 states. 

 

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows: 

1. New 

2. Runnable 

3. Running 

4. Non-Runnable (Blocked) 

5. Terminated 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to create thread 

 

There are two ways to create a thread: 

 

1. By extending Thread class 

2. By implementing Runnable interface. 

 

Thread class: 

 

Thread class provide constructors and methods to create and perform operations on a 
thread.Thread class extends Object class and implements Runnable interface. 

 

Commonly used Constructors of Thread class: 

 

o Thread() 

o Thread(String name) 

o Thread(Runnable r) 

o Thread(Runnable r,String name) 



 

Commonly used methods of Thread class: 

 

1. public void run(): is used to perform action for a thread. 

2. public void start(): starts the execution of the thread.JVM calls the run() method on the thread. 

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily 

cease execution) for the specified number of milliseconds. 

4. public void join(): waits for a thread to die. 

5. public void join(long miliseconds): waits for a thread to die for the specified miliseconds. 

6. public int getPriority(): returns the priority of the thread. 

7. public int setPriority(int priority): changes the priority of the thread. 

8. public String getName(): returns the name of the thread. 

9. public void setName(String name): changes the name of the thread. 

10. public Thread currentThread(): returns the reference of currently executing thread. 

11. public int getId(): returns the id of the thread. 

12. public Thread.State getState(): returns the state of the thread. 

13. public boolean isAlive(): tests if the thread is alive. 

14. public void yield(): causes the currently executing thread object to temporarily pause and allow 
other threads to execute. 

15. public void suspend(): is used to suspend the thread(depricated). 

16. public void resume(): is used to resume the suspended thread(depricated). 

17. public void stop(): is used to stop the thread(depricated). 

18. public boolean isDaemon(): tests if the thread is a daemon thread. 

19. public void setDaemon(boolean b): marks the thread as daemon or user thread. 

20. public void interrupt(): interrupts the thread. 

21. public boolean isInterrupted(): tests if the thread has been interrupted. 

22. public static boolean interrupted(): tests if the current thread has been interrupted. 

 

 

Runnable interface: 

 

The Runnable interface should be implemented by any class whose instances are intended to be 

executed by a thread. Runnable interface have only one method named run(). 

1. public void run(): is used to perform action for a thread. 

 

 

Starting a thread: 

 

start() method of Thread class is used to start a newly created thread. It performs following 

tasks: 

o A new thread starts(with new callstack). 

o The thread moves from New state to the Runnable state. 

o When the thread gets a chance to execute, its target run() method will run. 



 

Output:thread is running... 

Output:thread is running... 

Java Thread Example by extending Thread class 

 

class Multi extends Thread{ 

public void run(){ 

System.out.println("thread is running..."); 

} 

public static void main(String args[]){ 
Multi t1=new Multi(); 

t1.start(); 

} } 

 

 

Java Thread Example by implementing Runnable interface 

 

class Multi3 implements Runnable{ 

public void run(){ 

System.out.println("thread is running..."); 

} 

public static void main(String args[]){ 

Multi3 m1=new Multi3(); 

Thread t1 =new Thread(m1); 

t1.start(); 
} } 

 

Priority of a Thread (Thread Priority): 

Each thread have a priority. Priorities are represented by a number between 1 and 10. In most 

cases, thread schedular schedules the threads according to their priority (known as preemptive 

scheduling). But it is not guaranteed because it depends on JVM specification that which 

scheduling it chooses. 

 

3 constants defined in Thread class: 

 

1. public static int MIN_PRIORITY 

2. public static int NORM_PRIORITY 

3. public static int MAX_PRIORITY 

 

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and 

the value of MAX_PRIORITY is 10. 

 

Example of priority of a Thread: 

class TestMultiPriority1 extends Thread{ 
public void run(){ 

System.out.println("running thread name is:"+Thread.currentThread().getName()); 

System.out.println("running thread priority is:"+Thread.currentThread().getPriority()); 
} 

public static void main(String args[]){ 



 

TestMultiPriority1 m1=new TestMultiPriority1(); 

TestMultiPriority1 m2=new TestMultiPriority1(); 

m1.setPriority(Thread.MIN_PRIORITY); 

m2.setPriority(Thread.MAX_PRIORITY); 

m1.start(); 

m2.start(); 

} } 

Output:running thread name is:Thread-0 
running thread priority is:10 

running thread name is:Thread-1 

running thread priority is:1 

 

 

Java synchronized method 

 

If you declare any method as synchronized, it is known as synchronized method. 

Synchronized method is used to lock an object for any shared resource. 

When a thread invokes a synchronized method, it automatically acquires the lock for that object 

and releases it when the thread completes its task. 

 

Example of inter thread communication in java 

 

Let's see the simple example of inter thread communication. 

 
class Customer{ 

int amount=10000; 

synchronized void withdraw(int amount){ 

System.out.println("going to withdraw..."); 

if(this.amount<amount){ 
System.out.println("Less balance; waiting for deposit..."); 

try{wait();}catch(Exception e){} 

} 

this.amount-=amount; 

System.out.println("withdraw completed..."); 

} 

synchronized void deposit(int amount){ 

System.out.println("going to deposit..."); 

this.amount+=amount; 

System.out.println("deposit completed... "); 

notify(); 

} 

} 

class Test{ 

public static void main(String args[]){ 

final Customer c=new Customer(); 

new Thread(){ 

public void run(){c.withdraw(15000);} 

}.start(); 

new Thread(){ 



 

Output: going to withdraw... 

Less balance; waiting for deposit... 

going to deposit... 

deposit completed... 

withdraw completed 

Note: Now suspend(), resume() and stop() methods are deprecated. 

public void run(){c.deposit(10000);} 

} 

start(); 

}} 

ThreadGroup in Java 

 

Java provides a convenient way to group multiple threads in a single object. In such way, we can 
suspend, resume or interrupt group of threads by a single method call. 

 

 

Java thread group is implemented by java.lang.ThreadGroup class. 

Constructors of ThreadGroup class 

There are only two constructors of ThreadGroup class. 

 

ThreadGroup(String name) 
ThreadGroup(ThreadGroup parent, String name) 

 

Let's see a code to group multiple threads. 

 

1. ThreadGroup tg1 = new ThreadGroup("Group A"); 

2. Thread t1 = new Thread(tg1,new MyRunnable(),"one"); 

3. Thread t2 = new Thread(tg1,new MyRunnable(),"two"); 

4. Thread t3 = new Thread(tg1,new MyRunnable(),"three"); 

 

Now all 3 threads belong to one group. Here, tg1 is the thread group name, MyRunnable is the 

class that implements Runnable interface and "one", "two" and "three" are the thread names. 

 

Now we can interrupt all threads by a single line of code only. 

 

1. Thread.currentThread().getThreadGroup().interrupt(); 

 

 

 

 

 

 

 

 

 

 

Exploring java.net and java.text 



 

java.net 

The term network programming refers to writing programs that execute across multiple devices 

(computers), in which the devices are all connected to each other using a network. 

The java.net package of the J2SE APIs contains a collection of classes and interfaces that 

provide the low-level communication details, allowing you to write programs that focus on 

solving the problem at hand. 

The java.net package provides support for the two common network protocols − 

 

• TCP − TCP stands for Transmission Control Protocol, which allows for reliable 

communication between two applications. TCP is typically used over the Internet 

Protocol, which is referred to as TCP/IP. 

• UDP − UDP stands for User Datagram Protocol, a connection-less protocol that allows 

for packets of data to be transmitted between applications. 

This chapter gives a good understanding on the following two subjects − 

 

• Socket Programming − This is the most widely used concept in Networking and it has 

been explained in very detail. 

• URL Processing − This would be covered separately. 

 

java.text 

 

The java.text package is necessary for every java developer to master because it has a lot of 

classes that is helpful in formatting such as dates, numbers, and messages. 

 

java.text Classes 

The following are the classes available for java.text package 

[table] 

Class|Description 

SimpleDateFormat|is a concrete class that helps in formatting and parsing of dates. 

[/table] 

http://javatutorialhq.com/java/text/simpledateformat-class-tutorial/


 

Collection Framework in Java 

 

Collections in java is a framework that provides an architecture to store and manipulate 

the group of objects. All the operations that you perform on a data such as searching, 

sorting, insertion, manipulation, deletion etc. can be performed by Java Collections. 

 

Java Collection simply means a single unit of objects. Java Collection framework provides 

many interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList, 

PriorityQueue, HashSet, LinkedHashSet, TreeSet etc). 

 

What is framework in java 

 

✓ provides readymade architecture. 

✓ represents set of classes and interface. 

✓ is optional. 

 

What is Collection framework 

 

Collection framework represents a unified architecture for storing and manipulating group of 

objects. It has: 

 

1. Interfaces and its implementations i.e. classes 

2. Algorithm 

 

Hierarchy of Collection Framework 



 

 



 

Java List Interface 

 

List Interface is the sub interface of Collection. It contains index-based methods to insert and delete 

elements. It is a factory of ListIterator interface. 

 

List Interface declaration 

 

1. public interface List<E> extends Collection<E> 

Methods of Java List Interface 

Method Description 

void add(int index, E element) It is used to insert the specified element at the 

specified position in a list. 

boolean add(E e) It is used to append the specified element at the end 

of a list. 

boolean addAll(Collection<? extends E> c) It is used to append all of the elements in the 

specified collection to the end of a list. 

boolean addAll(int index, Collection<? 

extends E> c) 

It is used to append all the elements in the specified 

collection, starting at the specified position of the 

list. 

void clear() It is used to remove all of the elements from this 

list. 

boolean equals(Object o) It is used to compare the specified object with the 

elements of a list. 

int hashcode() It is used to return the hash code value for a list. 

E get(int index) It is used to fetch the element from the particular 

position of the list. 

boolean isEmpty() It returns true if the list is empty, otherwise false. 

int lastIndexOf(Object o) It is used to return the index in this list of the last 

occurrence of the specified element, or -1 if the list 

does not contain this element. 

Object[] toArray() It is used to return an array containing all of the 

elements in this list in the correct order. 

T[] toArray(T[] a) It is used to return an array containing all of the 

elements in this list in the correct order. 

boolean contains(Object o) It returns true if the list contains the specified 

element 

boolean containsAll(Collection<?> c) It returns true if the list contains all the specified 

element 

int indexOf(Object o) It is used to return the index in this list of the first 

occurrence of the specified element, or -1 if the 

List does not contain this element. 

 



 

An element at 2nd position: Vijay 

Amit 

Sachi

n 

Vijay 

Kuma

r 

E remove(int index) It is used to remove the element present at the 

specified position in the list. 

 

boolean remove(Object o) It is used to remove the first occurrence of the 

specified element. 

 

boolean removeAll(Collection<?> c) It is used to remove all the elements from the 

list. 

 

void replaceAll(UnaryOperator operator) It is used to replace all the elements from the 

list with the specified element. 

 

void retainAll(Collection<?> c) It is used to retain all the elements in the list 

that are present in the specified collection. 

 

E set(int index, E element) It is used to replace the specified element in the 

list, present at the specified position. 

 

void sort(Comparator<? super E> c) It is used to sort the elements of the list on the 

basis of specified comparator. 

 

Spliterator spliterator() It is used to create spliterator over the elements 

in a list. 

 

List<E> subList(int fromIndex, int 

toIndex) 

It is used to fetch all the elements lies within 

the given range. 

 

int size() It is used to return the number of elements 

present in the list. 

 

 

Java List Example 

 
1. import java.util.*; 
2. public class ListExample{ 
3. public static void main(String args[]){ 
4. List<String> al=new ArrayList<String>(); 
5. al.add("Amit"); 
6. al.add("Vijay"); 
7. al.add("Kumar"); 
8. al.add(1,"Sachin"); 
9. System.out.println("An element at 2nd position: "+al.get(2)); 
10. for(String s:al){ 
11. System.out.println(s); 
12. } 
13. } 

14. } 

 

Output: 

 

 

Java ListIterator Interface 



 

ListIterator Interface is used to traverse the element in a backward and forward 

direction. ListIterator Interface declaration 

1. public interface ListIterator<E> extends 

Iterator<E> Methods of Java ListIterator Interface: 

Method Description 

void add(E e) This method inserts the specified element into the list. 

boolean hasNext() This method returns true if the list iterator has more elements while 

traversing the list in the forward direction. 

E next() This method returns the next element in the list and advances the 

cursor position. 

int nextIndex() This method returns the index of the element that would be returned 

by a subsequent call to next() 

boolean hasPrevious() This method returns true if this list iterator has more elements while 

traversing the list in the reverse direction. 

E previous() This method returns the previous element in the list and moves the 

cursor position backward. 

E previousIndex() This method returns the index of the element that would be returned 

by a subsequent call to previous(). 

void remove() This method removes the last element from the list that was returned 

by next() or previous() methods 

void set(E e) This method replaces the last element returned by next() or 

previous() methods with the specified element. 

 

Example of ListIterator Interface 

 
1. import java.util.*; 
2. public class ListIteratorExample1{ 
3. public static void main(String args[]){ 
4. List<String> al=new ArrayList<String>(); 
5. al.add("Amit"); 
6. al.add("Vijay"); 
7. al.add("Kumar"); 
8. al.add(1,"Sachin"); 
9. ListIterator<String> itr=al.listIterator(); 
10. System.out.println("Traversing elements in forward direction"); 
11. while(itr.hasNext()) 
12. { 
13. 
14. System.out.println("index:"+itr.nextIndex()+" value:"+itr.next()); 
15. } 
16. System.out.println("Traversing elements in backward direction"); 
17. while(itr.hasPrevious()) 
18. { 



 

19. 
20. System.out.println("index:"+itr.previousIndex()+" value:"+itr.previous()); 
21. } 
22. } 

23. } 

 

Output: 



 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communications & Networking Forouzan Mc Graw 

Hill 4 103 Operating System Galvin Wiley 6 

 
 

Example of ListIterator Interface: Book 

 
1. import java.util.*; 
2. class Book { 
3. int id; 
4. String name,author,publisher; 
5. int quantity; 
6. public Book(int id, String name, String author, String publisher, int quantity) { 
7. this.id = id; 
8. this.name = name; 
9. this.author = author; 
10. this.publisher = publisher; 
11. this.quantity = quantity; 
12. } 
13. } 
14. public class ListIteratorExample2 { 
15. public static void main(String[] args) { 
16. //Creating list of Books 
17. List<Book> list=new ArrayList<Book>(); 
18. //Creating Books 
19. Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8); 
20. Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw 

Hill",4); 
21. Book b3=new Book(103,"Operating System","Galvin","Wiley",6); 
22. //Adding Books to list 
23. list.add(b1); 
24. list.add(b2); 
25. list.add(b3); 
26. //Traversing list 
27. for(Book b:list){ 
28. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity); 
29. } 
30. } 

31. } 

 

Output: 

 

Traversing elements in forward 

direction index:0 value:Amit 

index:1 

value:Sachin 

index:2 

value:Vijay 

index:3 

value:Kumar 

Traversing elements in backward 

direction index:3 value:Kumar 

index:2 value:Vijay 

index:1 value:Sachin 

index:0 value:Amit 



 

Java ArrayList class 

 

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList 

class and implements List interface. 

 
The important points about Java ArrayList class are: 

 

✓ Java ArrayList class can contain duplicate elements. 

✓ Java ArrayList class maintains insertion order. 

✓ Java ArrayList class is non synchronized. 

✓ Java ArrayList allows random access because array works at the index basis. 

✓ In Java ArrayList class, manipulation is slow because a lot of shifting needs to be 

occurred if any element is removed from the array list. 

 
ArrayList class declaration 
 

Let's see the declaration for java.util.ArrayList class. 

 
Constructors of Java ArrayList Constructor Description 
ArrayList() It is used to build an empty array list. 

ArrayList(Collection c) It is used to build an array list that is 
initialized with the elements of the 
collection c. 

ArrayList(int capacity) It is used to build an array list that has 
the specified initial capacity. 

 

Java ArrayList Example  

 

import java.util.*; 
class TestCollection1 

{ 
public static void main(String args[]) 

{ 

ArrayList<String> list=new ArrayList<String>();//Creating arraylist 

list.add("Ravi");//Adding object in arraylist 
list.add("Vijay"); 
list.add("Ravi"); 
list.add("Ajay"); 

//Traversing list through Iterator 

Iterator itr=list.iterator(); 

while(itr.hasNext()) 
{ 
System.out.println(itr.next()); 
} 
} 

} 

 

Ouput: Ravi 

Vijay Ravi 

Ajay 



 

Java Map Interface 

 

A map contains values on the basis of key, i.e. key and value pair. Each key and value pair is known 

as an entry. A Map contains unique keys. 

 

A Map is useful if you have to search, update or delete elements on the basis of a key. 

Java Map Hierarchy 

There are two interfaces for implementing Map in java: Map and SortedMap, and three classes: 
HashMap, LinkedHashMap, and TreeMap. The hierarchy of Java Map is given below: 

 

 

 

A Map doesn't allow duplicate keys, but you can have duplicate values. HashMap and 

LinkedHashMap allow null keys and values, but TreeMap doesn't allow any null key or value. 

 

A Map can't be traversed, so you need to convert it into Set using keySet() or entrySet() method. 

 

Class Description 

HashMap HashMap is the implementation of Map, but it doesn't maintain any 

order. 

LinkedHashMap LinkedHashMap is the implementation of Map. It inherits HashMap 

class. It maintains insertion order. 

TreeMap TreeMap is the implementation of Map and SortedMap. It maintains 

ascending order. 

 

 
Java Map Example: Non-Generic (Old Style) 

1. //Non-generic 
2. import java.util.*; 
3. public class MapExample1 { 
4. public static void main(String[] args) { 
5. Map map=new HashMap(); 

https://www.javatpoint.com/java-hashmap
https://www.javatpoint.com/java-linkedhashmap


 

6. //Adding elements to map 
7. map.put(1,"Amit"); 
8. map.put(5,"Rahul"); 
9. map.put(2,"Jai"); 
10. map.put(6,"Amit"); 



 

1 Amit 
2 Jai 
5 Rahul 
6 Amit 

102 Rahul 
100 Amit 
101 Vijay 

11. //Traversing Map 
12. Set set=map.entrySet();//Converting to Set so that we can traverse 
13. Iterator itr=set.iterator(); 
14. while(itr.hasNext()){ 
15. //Converting to Map.Entry so that we can get key and value separately 
16. Map.Entry entry=(Map.Entry)itr.next(); 
17. System.out.println(entry.getKey()+" "+entry.getValue()); 
18. } 
19. } 
20. } 

 

Output: 

 

 

 

Java Map Example: Generic (New Style) 
1. import java.util.*; 

2. class 

MapExample2 3. { 

4. public static void main(String 

args[]) 5. { 
6. Map<Integer,String> map=new HashMap<Integer,String>(); 
7. map.put(100,"Amit"); 
8. map.put(101,"Vijay"); 
9. map.put(102,"Rahul"); 
10. //Elements can traverse in any order 
11. for(Map.Entry m:map.entrySet()){ 
12. System.out.println(m.getKey()+" "+m.getValue()); 
13. } 
14. } 

15. } 

 

Output: 

 



 

Java HashMap class 

 

 

Java HashMap class implements the map interface by using a hash table. It inherits AbstractMap 

class and implements Map interface. 

 

Points to remember 

o Java HashMap class contains values based on the key. 

o Java HashMap class contains only unique keys. 

o Java HashMap class may have one null key and multiple null values. 

o Java HashMap class is non synchronized. 

o Java HashMap class maintains no order. 

o The initial default capacity of Java HashMap class is 16 with a load factor of 0.75. 

 

Hierarchy of HashMap class 

 

As shown in the above figure, HashMap class extends AbstractMap class and implements Map 

interface. HashMap class declaration 

Let's see the declaration for java.util.HashMap class. 
 

1. public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, 

Cloneable, Serializ able 

 

HashMap class Parameters 

 

Let's see the Parameters for java.util.HashMap class. 

 

o K: It is the type of keys maintained by this map. 

o V: It is the type of mapped values. 

 

Constructors of Java HashMap class 

Constructor Description 

HashMap() It is used to construct a default HashMap. 



 

HashMap(Map<? extends K,? 

extends V> m) 

It is used to initialize the hash map by using the 

elements of the given Map object m. 



 

HashMap(int capacity) It is used to initializes the capacity of the hash map to 

the given integer value, capacity. 

HashMap(int capacity, float 

loadFactor) 

It is used to initialize both the capacity and load factor 

of the hash map by using its arguments. 

 

Methods of Java HashMap class 

Method Description 

void clear() It is used to remove all of the mappings from this 

map. 

boolean isEmpty() It is used to return true if this map contains no key- 

value mappings. 

Object clone() It is used to return a shallow copy of this HashMap 

instance: the keys and values themselves are not 

cloned. 

Set entrySet() It is used to return a collection view of the 

mappings contained in this map. 

Set keySet() It is used to return a set view of the keys contained 

in this map. 

V put(Object key, Object value) It is used to insert an entry in the map. 

void putAll(Map map) It is used to insert the specified map in the map. 

V putIfAbsent(K key, V value) It inserts the specified value with the specified key 

in the map only if it is not already specified. 

V remove(Object key) It is used to delete an entry for the specified key. 

boolean remove(Object key, Object 

value) 

It removes the specified values with the associated 

specified keys from the map. 

V compute(K key, BiFunction<? super 

K,? super V,? extends V> 

remappingFunction) 

It is used to compute a mapping for the specified 

key and its current mapped value (or null if there is 

no current mapping). 

V computeIfAbsent(K key, Function<? 

super K,? extends V> mappingFunction) 

It is used to compute its value using the given 

mapping function, if the specified key is not already 

associated with a value (or is mapped to null), and 

enters it into this map unless null. 



 

V computeIfPresent(K key, 

BiFunction<? super K,? super V,? 

extends V> remappingFunction) 

It is used to compute a new mapping given the key 

and its current mapped value if the value for the 

specified key is present and non-null. 

boolean containsValue(Object value) This method returns true if some value equal to the 

value exists within the map, else return false. 

boolean containsKey(Object key) This method returns true if some key equal to the 

key exists within the map, else return false. 

boolean equals(Object o) It is used to compare the specified Object with the 

Map. 

void forEach(BiConsumer<? super K,? 

super V> action) 

It performs the given action for each entry in the 

map until all entries have been processed or the 

action throws an exception. 

V get(Object key) This method returns the object that contains the 

value associated with the key. 

V getOrDefault(Object key, V 

defaultValue) 

It returns the value to which the specified key 

is mapped, or defaultValue if the map contains 

no mapping for the key. 

boolean isEmpty() This method returns true if the map is empty; 

returns false if it contains at least one key. 

V merge(K key, V value, BiFunction<? 

super V,? super V,? extends V> 

remappingFunction) 

If the specified key is not already associated with a 

value or is associated with null, associates it with 

the given non-null value. 

V replace(K key, V value) It replaces the specified value for a specified key. 

boolean replace(K key, V oldValue, V 

newValue) 

It replaces the old value with the new value for a 

specified key. 

void replaceAll(BiFunction<? super K,? 

super V,? extends V> function) 

It replaces each entry's value with the result of 

invoking the given function on that entry until all 

entries have been processed or the function throws 

an exception. 

Collection<V> values() It returns a collection view of the values contained 

in the map. 

int size() This method returns the number of entries in the 

map. 

 

Java HashMap example to add() elements 



 

Here, we see different ways to insert elements. 

import java.util.*; 

class HashMap1{ 
public static void main(String args[]){ 

HashMap<Integer,String> hm=new 

HashMap<Integer,String>(); System.out.println("Initial list 

of elements: "+hm); hm.put(100,"Amit"); 
hm.put(101,"Vijay"); 
hm.put(102,"Rahul"); 

 

System.out.println("After invoking put() 

method "); for(Map.Entry m:hm.entrySet()){ 

System.out.println(m.getKey()+" 

"+m.getValue()); 
} 

 

hm.putIfAbsent(103, "Gaurav"); 
System.out.println("After invoking putIfAbsent() method "); 

for(Map.Entry m:hm.entrySet()){ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 

HashMap<Integer,String> map=new HashMap<Integer,String>(); 

map.put(104,"Ravi"); 
map.putAll(hm); 
System.out.println("After invoking putAll() method "); 

for(Map.Entry m:map.entrySet()){ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 

} 
} 

 

 

Initial list of elements: {} 

After invoking put() 

method 100 Amit 
101 Vijay 
102 Rahul 

After invoking putIfAbsent() 

method 100 Amit 

101 Vijay 
102 Rahul 
103 Gaurav 

After invoking putAll() method 

100 Amit 
101 Vijay 
102 Rahul 
103 Gaurav 
104 Ravi 



 

Initial list of elements: {100=Amit, 101=Vijay, 102=Rahul, 

103=Gaurav} Updated list of elements: {101=Vijay, 102=Rahul, 

103=Gaurav} Updated list of elements: {102=Rahul, 103=Gaurav} 
Updated list of elements: {103=Gaurav} 

 

Java HashMap example to remove() elements 

Here, we see different ways to remove elements. 

import java.util.*; 

public class HashMap2  

{ 

public static void main(String args[]) 

 { 

HashMap<Integer,String> map=new 

HashMap<Integer,String>(); map.put(100,"Amit"); 
map.put(101,"Vijay"); 
map.put(102,"Rahul"); 

map.put(103, "Gaurav"); 

System.out.println("Initial list of elements: 

"+map); 

//key-based removal 

map.remove(100); 
System.out.println("Updated list of elements: "+map); 
//value-based removal 

map.remove(101); 
System.out.println("Updated list of elements: "+map); 

//key-value pair based removal 

map.remove(102, "Rahul"); 
System.out.println("Updated list of elements: "+map); 
} 

} 

 

Output: 

 

 

 

Java HashMap example to replace() elements 

Here, we see different ways to replace elements. 

import java.util.*; 
class HashMap3{ 
public static void main(String args[]){ 

HashMap<Integer,String> hm=new 

HashMap<Integer,String>(); hm.put(100,"Amit"); 
hm.put(101,"Vijay"); 

hm.put(102,"Rahul"); 

System.out.println("Initial list of 

elements:"); for(Map.Entry 



 

m:hm.entrySet()) 
{ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 

System.out.println("Updated list of elements:"); 

hm.replace(102, "Gaurav"); 
for(Map.Entry m:hm.entrySet()) 
{ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 

System.out.println("Updated list of 

elements:"); hm.replace(101, "Vijay", 

"Ravi"); for(Map.Entry m:hm.entrySet()) 
{ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 

System.out.println("Updated list of elements:"); 

hm.replaceAll((k,v) -> "Ajay"); 



 

for(Map.Entry m:hm.entrySet()) 
{ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 

} 
} 
Initial list of elements: 

100 Amit 
101 Vijay 
102 Rahul 

Updated list of elements: 
100 Amit 
101 Vijay 
102 Gaurav 

Updated list of elements: 
100 Amit 
101 Ravi 
102 Gaurav 

Updated list of elements: 
100 Ajay 
101 Ajay 
102 Ajay 

Difference between HashSet and HashMap 

 

HashSet contains only values whereas HashMap contains an entry(key and value). 

 
Java HashMap Example: Book 

import java.util.*; 
class Book { 
int id; 

String name,author,publisher; 
int quantity; 

public Book(int id, String name, String author, String publisher, int quantity) { 

this.id = id; 

this.name = name; 

this.author = 

author; 
this.publisher = publisher; 
this.quantity = quantity; 

} 
} 

public class MapExample { 
public static void main(String[] args) { 

//Creating map of Books 
Map<Integer,Book> map=new HashMap<Integer,Book>(); 
//Creating Books 
Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8); 

Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw 

Hill",4); Book b3=new Book(103,"Operating System","Galvin","Wiley",6); 

//Adding Books to 

map map.put(1,b1); 
map.put(2,b2); 
map.put(3,b3); 

 



 

//Traversing map 
for(Map.Entry<Integer, Book> entry:map.entrySet()){ 

int key=entry.getKey(); 



 

Book b=entry.getValue(); 

System.out.println(key+" Details:"); 
System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity); 

} 
} 
} 
Output: 
1 Details: 

101 Let us C Yashwant Kanetkar 

BPB 8 2 Details: 

102 Data Communications & Networking Forouzan Mc Graw 

Hill 4 3 Details: 

103 Operating System Galvin 

Wiley 6 Java TreeMap class 

 

 

 

 

 

 

 

 

 

 

Java TreeMap class is a red-black tree based implementation. It provides an efficient means of 

storing key-value pairs in sorted order. 

 

The important points about Java TreeMap class are: 

 
o Java TreeMap contains values based on the key. It implements the NavigableMap 

interface and extends AbstractMap class. 

o Java TreeMap contains only unique elements. 

o Java TreeMap cannot have a null key but can have multiple null values. 

o Java TreeMap is non synchronized. 

o Java TreeMap maintains ascending order. 

 

TreeMap class declaration 

 

Let's see the declaration for java.util.TreeMap class. 

 

1. public class TreeMap<K,V> extends AbstractMap<K,V> implements NavigableMap<K,V>, 

Cloneabl e, Serializable 

TreeMap class Parameters 

 

Let's see the Parameters for java.util.TreeMap class. 

 



 

o K: It is the type of keys maintained by this map. 

o V: It is the type of mapped values. 



 

Constructors of Java TreeMap class 

Constructor Description 

TreeMap() It is used to construct an empty tree map that will be 

sorted using the natural order of its key. 

TreeMap(Comparator<? super K> 

comparator) 

It is used to construct an empty tree-based map that will 

be sorted using the comparator comp. 

TreeMap(Map<? extends K,? 

extends V> m) 

It is used to initialize a treemap with the entries from 

m, which will be sorted using the natural order of the 

keys. 

TreeMap(SortedMap<K,? extends 

V> m) 

It is used to initialize a treemap with the entries 

from the SortedMap sm, which will be sorted in 

the same order as sm. 

Methods of Java TreeMap class 

Method Description 

Map.Entry<K,V> ceilingEntry(K key) It returns the key-value pair having the least 

key, greater than or equal to the specified 

key, or null if there is no such key. 

K ceilingKey(K key) It returns the least key, greater than the 

specified key or null if there is no such key. 

void clear() It removes all the key-value pairs from a map. 

Object clone() It returns a shallow copy of TreeMap 

instance. 

Comparator<? super K> comparator() It returns the comparator that arranges the key 

in order, or null if the map uses the natural 

ordering. 

NavigableSet<K> descendingKeySet() It returns a reverse order NavigableSet view 

of the keys contained in the map. 

NavigableMap<K,V> descendingMap() It returns the specified key-value pairs in 

descending order. 

Map.Entry firstEntry() It returns the key-value pair having the least 

key. 

Map.Entry<K,V> floorEntry(K key) It returns the greatest key, less than or equal 

to the specified key, or null if there is no 

such key. 



 

void forEach(BiConsumer<? super K,? super 

V> action) 

It performs the given action for each entry in 

the map until all entries have been processed 

or the action throws an exception. 

SortedMap<K,V> headMap(K toKey) It returns the key-value pairs whose keys are 

strictly less than toKey. 

NavigableMap<K,V> headMap(K toKey, 

boolean inclusive) 

It returns the key-value pairs whose keys are 

less than (or equal to if inclusive is true) 

toKey. 

Map.Entry<K,V> higherEntry(K key) It returns the least key strictly greater than the 

given key, or null if there is no such key. 

K higherKey(K key) It is used to return true if this map contains a 

mapping for the specified key. 

Set keySet() It returns the collection of keys exist in the 

map. 

Map.Entry<K,V> lastEntry() It returns the key-value pair having the 

greatest key, or null if there is no such key. 

Map.Entry<K,V> lowerEntry(K key) It returns a key-value mapping associated 

with the greatest key strictly less than the 

given key, or null if there is no such key. 

K lowerKey(K key) It returns the greatest key strictly less than the 

given key, or null if there is no such key. 

NavigableSet<K> navigableKeySet() It returns a NavigableSet view of the keys 

contained in this map. 

Map.Entry<K,V> pollFirstEntry() It removes and returns a key-value mapping 

associated with the least key in this map, or 

null if the map is empty. 

Map.Entry<K,V> pollLastEntry() It removes and returns a key-value mapping 

associated with the greatest key in this map, 

or null if the map is empty. 

V put(K key, V value) It inserts the specified value with the specified 

key in the map. 

void putAll(Map<? extends K,? extends V> 

map) 

It is used to copy all the key-value pair from 

one map to another map. 



 

V replace(K key, V value) It replaces the specified value for a specified 

key. 



 

boolean replace(K key, V oldValue, V 

newValue) 

It replaces the old value with the new value 

for a specified key. 

void replaceAll(BiFunction<? super K,? 

super V,? extends V> function) 

It replaces each entry's value with the result of 

invoking the given function on that entry until 

all entries have been processed or the function 

throws an exception. 

NavigableMap<K,V> subMap(K fromKey, 

boolean fromInclusive, K toKey, boolean 

toInclusive) 

It returns key-value pairs whose keys range 

from fromKey to toKey. 

SortedMap<K,V> subMap(K fromKey, K 

toKey) 
It returns key-value pairs whose keys range 

from fromKey, inclusive, to toKey, 

exclusive. 

SortedMap<K,V> tailMap(K fromKey) It returns key-value pairs whose keys are 
greater than or equal to fromKey. 

NavigableMap<K,V> tailMap(K fromKey, 

boolean inclusive) 

It returns key-value pairs whose keys are 

greater than (or equal to, if inclusive is true) 

fromKey. 

boolean containsKey(Object key) It returns true if the map contains a mapping 

for the specified key. 

boolean containsValue(Object value) It returns true if the map maps one or more 
keys to the specified value. 

K firstKey() It is used to return the first (lowest) key 

currently in this sorted map. 

V get(Object key) It is used to return the value to which the map 

maps the specified key. 

K lastKey() It is used to return the last (highest) key 

currently in the sorted map. 

V remove(Object key) It removes the key-value pair of the specified 

key from the map. 

Set<Map.Entry<K,V>> entrySet() It returns a set view of the mappings 

contained in the map. 

int size() It returns the number of key-value pairs 

exists in the hashtable. 



 

Collection values() It returns a collection view of the values 

contained in the map. 

 

Java TreeMap Example 

import java.util.*; class 

TreeMap1{ 
public static void main(String args[]){ 

TreeMap<Integer,String> map=new TreeMap<Integer,String>(); map.put(100,"Amit"); 
map.put(102,"Ravi"); 
map.put(101,"Vijay"); 
map.put(103,"Rahul"); 

 

for(Map.Entry m:map.entrySet()){ System.out.println(m.getKey()+" 
"+m.getValue()); 

} 
} 

} 

 
 

Java TreeMap Example: remove() 
import java.util.*; 
public class TreeMap2 { 

public static void main(String args[]) { TreeMap<Integer,String> map=new 

TreeMap<Integer,String>(); 
map.put(100,"Amit"); 
map.put(102,"Ravi"); 
map.put(101,"Vijay"); 
map.put(103,"Rahul"); 
System.out.println("Before invoking remove() method"); 
for(Map.Entry m:map.entrySet()) 
{ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 
map.remove(102); 
System.out.println("After invoking remove() method"); 
for(Map.Entry m:map.entrySet()) 
{ 

System.out.println(m.getKey()+" "+m.getValue()); 
} 
} 

} 

 

Output: 

Output:100 Amit 

101 Vijay 
102 Ravi 
103 Rahul 



 

Before invoking remove() method 

100 Amit 
101 Vijay 
102 Ravi 
103 Rahul 
After invoking remove() method 

 

 
 

 

Java TreeMap Example: NavigableMap 
import java.util.*; 
class TreeMap3{ 
public static void main(String args[]){ 

NavigableMap<Integer,String> map=new TreeMap<Integer,String>(); map.put(100,"Amit"); 
map.put(102,"Ravi"); 
map.put(101,"Vijay"); 
map.put(103,"Rahul"); 

//Maintains descending order System.out.println("descendingMap: 

"+map.descendingMap()); 
//Returns key- 

value pairs whose keys are less than or equal to the specified key. 
System.out.println("headMap: "+map.headMap(102,true)); 
//Returns key- 

value pairs whose keys are greater than or equal to the specified key. 
System.out.println("tailMap: "+map.tailMap(102,true)); 

//Returns key-value pairs exists in between the specified key. System.out.println("subMap: 

"+map.subMap(100, false, 102, true)); 
} 

} 

descendingMap: {103=Rahul, 102=Ravi, 101=Vijay, 100=Amit} 

 
 

Java TreeMap Example: SortedMap 
import java.util.*; 
class TreeMap4{ 
public static void main(String args[]){ 

SortedMap<Integer,String> map=new TreeMap<Integer,String>(); map.put(100,"Amit"); 
map.put(102,"Ravi"); 
map.put(101,"Vijay"); 
map.put(103,"Rahul"); 

//Returns key-value pairs whose keys are less than the specified key. 
System.out.println("headMap: "+map.headMap(102)); 
//Returns key- 

value pairs whose keys are greater than or equal to the specified key. 
System.out.println("tailMap: "+map.tailMap(102)); 

//Returns key-value pairs exists in between the specified key. System.out.println("subMap: 

headMap: {100=Amit, 101=Vijay, 102=Ravi} 

tailMap: {102=Ravi, 103=Rahul} 

subMap: {101=Vijay, 102=Ravi} 

100 Amit 
101 Vijay 
103 Rahul 



 

"+map.subMap(100, 102)); 
} 

} 

headMap: {100=Amit, 101=Vijay} 

 

tailMap: {102=Ravi, 103=Rahul} 

subMap: {100=Amit, 101=Vijay} 



 

What is difference between HashMap and TreeMap? 

HashMap TreeMap 

1) HashMap can contain one null key. TreeMap cannot contain any null key. 

2) HashMap maintains no order. TreeMap maintains ascending order. 

Java TreeMap Example: Book 
import java.util.*; 
class Book { 
int id; 

String name,author,publisher; 
int quantity; 

public Book(int id, String name, String author, String publisher, int quantity) { 

this.id = id; this.name = 

name; this.author = 

author; 
this.publisher = publisher; 
this.quantity = quantity; 

} 
} 

public class MapExample { 
public static void main(String[] args) { 

//Creating map of Books 
Map<Integer,Book> map=new TreeMap<Integer,Book>(); 
//Creating Books 
Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8); 

Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill",4); 
Book b3=new Book(103,"Operating System","Galvin","Wiley",6); 

//Adding Books to map 
map.put(2,b2); 
map.put(1,b1); 
map.put(3,b3); 

 
//Traversing map 
for(Map.Entry<Integer, Book> entry:map.entrySet()){ 

int key=entry.getKey(); Book 

b=entry.getValue(); 
System.out.println(key+" Details:"); 

System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.q uantity);  
  }  
} 

} 

 

Output: 



 

1 Details: 

101 Let us C Yashwant Kanetkar BPB 8 

2 Details: 

102 Data Communications & Networking Forouzan Mc Graw Hill 4 

 



 

 
Set in Java 

• Set is an interface which extends Collection. It is an unordered collection of objects in which 

duplicate values cannot be stored. 
• Basically, Set is implemented by HashSet, LinkedHashSet or TreeSet (sorted representation). 

• Set has various methods to add, remove clear, size, etc to enhance the usage of this 

interface filter_none 

edit play_arrow 

brightness_4 

// Java code for adding elements in Set 

import java.util.*; 
public class Set_example 
{ 

public static void main(String[] args) 
{ 

// Set deonstration using HashSet 

Set<String> hash_Set = new 

HashSet<String>(); hash_Set.add("Geeks"); 

hash_Set.add("For"); 

hash_Set.add("Geeks"); 

hash_Set.add("Example"

); hash_Set.add("Set"); 

System.out.print("Set output without the duplicates"); 

System.out.println(hash_Set); 

// Set deonstration using TreeSet 

System.out.print("Sorted Set after passing into 

TreeSet"); Set<String> tree_Set = new 

TreeSet<String>(hash_Set); 

System.out.println(tree_Set); 
} 

} 

(Please note that we have entered a duplicate entity but it is not displayed in the output. Also, we can 

directly sort the entries by passing the unordered Set in as the parameter of TreeSet). 

 

Output: 

 
TreeSet in Java 

TreeSet is one of the most important implementations of the SortedSet interface in Java that uses a 

Tree for storage. The ordering of the elements is maintained by a set using their natural ordering 

whether or not an explicit comparator is provided. This must be consistent with equals if it is to 

correctly implement the Set interface. It can also be ordered by a Comparator provided at set 

creation time, depending on which constructor is used. The TreeSet implements a NavigableSet 

interface by inheriting AbstractSet class. 

Set output without the duplicates[Set, Example, Geeks, for] 

Sorted Set after passing into TreeSet[Example, For, Geeks, Set] 

3 Details: 

103 Operating System Galvin Wiley 6 



 

TreeSet ts = new TreeSet(); 

Set syncSet = Collections.synchronziedSet(ts); 

Few important features of TreeSet are as follows: 

1. TreeSet implements the SortedSet interface so duplicate values are not allowed. 
2. Objects in a TreeSet are stored in a sorted and ascending order. 

 

3. TreeSet does not preserve the insertion order of elements but elements are sorted by keys. 

4. TreeSet does not allow to insert Heterogeneous objects. It will throw classCastException at 

Runtime if trying to add hetrogeneous objects. 

5. TreeSet serves as an excellent choice for storing large amounts of sorted information 

which are supposed to be accessed quickly because of its faster access and retrieval 

time. 

6. TreeSet is basically implementation of a self-balancing binary search tree like Red-Black 

Tree. Therefore operations like add, remove and search take O(Log n) time. And operations 
like printing n elements in sorted order takes O(n) time. 

Constructors of TreeSet class: 
1. TreeSet t = new TreeSet(); 

This will create empty TreeSet object in which elements will get stored in default natural 

sorting order. 
2. TreeSet t = new TreeSet(Comparator comp); 

This constructor is used when external specification of sorting order of elements is needed. 
3. TreeSet t = new TreeSet(Collection col); 

This constructor is used when any conversion is needed from any Collection object to 

TreeSet object. 
4. TreeSet t = new TreeSet(SortedSet s); 

This constructor is used to convert SortedSet object to TreeSet Object. 
Synchronized TreeSet: 

The implementation in a TreeSet is not synchronized in a sense that if multiple threads access a tree 

set concurrently, and at least one of the threads modifies the set, it must be synchronized externally. 

This is typically accomplished by synchronizing on some object that naturally encapsulates the set. If 

no such object exists, the set should be “wrapped” using the Collections.synchronizedSortedSet 

method. This is best done at creation time, to prevent accidental unsynchronized access to the set: 

 

 

 

Below program illustrates the basic opearation of a TreeSet: 

// Java program to demonstrate insertions in TreeSet 

import java.util.*; 

 
class TreeSetDemo { 

public static void main(String[] args) 
{ 

TreeSet<String> ts1 = new TreeSet<String>(); 

 

// Elements are added using add() 

method ts1.add("A"); 
ts1.add("B"); 
ts1.add("C"); 

 

// Duplicates will not get 

insert ts1.add("C"); 

https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/


 

 

// Elements get stored in default natural 

// Sorting Order(Ascending) 

System.out.println(ts1); 
} 

} 
Output: 

 [A, B, C]  

Two things must be kept in mind while creating and adding elements into a TreeSet: 

 

• Firstly, insertion of null into a TreeSet throws NullPointerException because while 

insertion of null, it gets compared to the existing elements and null cannot be compared to 

any value. 
• Secondly, if we are depending on default natural sorting order, compulsory the object should 

be homogeneous and comparable otherwise we will get 

RuntimeException:ClassCastException 

 
// Java code to illustrate StringBuffer 
// class does not implements 

// Comparable interface. 

import java.util.*; 
class TreeSetDemo { 

 
public static void main(String[] args) 
{ 

TreeSet<StringBuffer> ts = new TreeSet<StringBuffer>(); 

 

// Elements are added using add() 

method ts.add(new 

StringBuffer("A")); ts.add(new 

StringBuffer("Z")); ts.add(new 

StringBuffer("L")); ts.add(new 

StringBuffer("B")); ts.add(new 

StringBuffer("O")); 

 

// We will get RunTimeException :ClassCastException 

// As StringBuffer does not implements Comparable interface 

System.out.println(ts); 
} 

} 

 

. 
NOTE: 

1. An object is said to be comparable if and only if the corresponding class implements 

Comparable interface. 

2. String class and all Wrapper classes already implements Comparable interface but 

StringBuffer class doesn’t implements Comparable interface.Hence we got 

ClassCastException in the above example. 
3. For an empty tree-set, when trying to insert null as first value, one will get NPE from JDK 

7.From 

1.7 onwards null is not at all accepted by TreeSet. However upto JDK 6, null will be 



 

accepted as first value, but any if insertion of any more values in the TreeSet, will also 

throw NullPointerException. 
Hence it was considered as bug and thus removed in JDK 7. 

Methods of TreeSet class: 

TreeSet implements SortedSet so it has availability of all methods in Collection, Set and SortedSet 

interfaces. Following are the methods in Treeset interface. 

1. void add(Object o): This method will add specified element according to some sorting 

order in TreeSet. Duplicate entires will not get added. 

2. boolean addAll(Collection c): This method will add all elements of specified Collection 
to the set. Elements in Collection should be homogeneous otherwise ClassCastException 

will be thrown. Duplicate Entries of Collection will not be added to TreeSet. 

3. void clear(): This method will remove all the elements. 

4. boolean contains(Object o): This method will return true if given element is present in 

TreeSet else it will return false. 

5. Object first(): This method will return first element in TreeSet if TreeSet is not null 
else it will throw NoSuchElementException. 

6. Object last(): This method will return last element in TreeSet if TreeSet is not null else it 

will throw NoSuchElementException. 

7. SortedSet headSet(Object toElement): This method will return elements of TreeSet which 
are less than the specified element. 

8. SortedSet tailSet(Object fromElement): This method will return elements of TreeSet 

which are greater than or equal to the specified element. 

9. SortedSet subSet(Object fromElement, Object toElement): This method will return elements 

ranging from fromElement to toElement. fromElement is inclusive and toElement is 

exclusive. 

10. boolean isEmpty(): This method is used to return true if this set contains no elements or 
is empty and false for the opposite case. 

11. Object clone(): The method is used to return a shallow copy of the set, which is just a 

simple copied set. 

12. int size(): This method is used to return the size of the set or the number of elements 

present in the set. 
13. boolean remove(Object o): This method is used to return a specific element from the set. 
14. Iterator iterator(): Returns an iterator for iterating over the elements of the set. 

15. Comparator comparator(): This method will return Comparator used to sort elements in 

TreeSet or it will return null if default natural sorting order is used. 

16. ceiling(E e): This method returns the least element in this set greater than or equal to 

the given element, or null if there is no such element. 

17. descendingIterator(): This method returns an iterator over the elements in this set in 

descending order. 
18. descendingSet(): This method returns a reverse order view of the elements contained in this 

set. 

19. floor(E e): This method returns the greatest element in this set less than or equal to 

the given element, or null if there is no such element. 

20. higher(E e): This method returns the least element in this set strictly greater than the given 

element, or null if there is no such element. 

21. lower(E e): This method returns the greatest element in this set strictly less than the given 

element, or null if there is no such element. 

22. pollFirst(): This method retrieves and removes the first (lowest) element, or returns null if 

this set is empty. 

23. pollLast(): This method retrieves and removes the last (highest) element, or returns null if 

this set is empty. 

24. spliterator(): This method creates a late-binding and fail-fast Spliterator over the 

https://www.geeksforgeeks.org/sortedset-java-examples/
https://www.geeksforgeeks.org/treeset-clear-method-in-java/
https://www.geeksforgeeks.org/treeset-contains-method-in-java/
https://www.geeksforgeeks.org/treeset-first-method-in-java/
https://www.geeksforgeeks.org/treeset-clone-method-in-java/
https://www.geeksforgeeks.org/treeset-size-method-in-java/
https://www.geeksforgeeks.org/treeset-ceiling-method-in-java-with-examples/


 

elements in this set. 

 

Java LinkedList class 

 

 

Java LinkedList class uses a doubly linked list to store the elements. It provides a linked-list data 

structure. It inherits the AbstractList class and implements List and Deque interfaces. 

 

The important points about Java LinkedList are: 

 

o Java LinkedList class can contain duplicate elements. 

o Java LinkedList class maintains insertion order. 

o Java LinkedList class is non synchronized. 

o In Java LinkedList class, manipulation is fast because no shifting needs to occur. 

o Java LinkedList class can be used as a list, stack or queue. 

 

Hierarchy of LinkedList class 

 

As shown in the above diagram, Java LinkedList class extends AbstractSequentialList class and 

implements List and Deque interfaces. 

 

Doubly Linked List 

 

In the case of a doubly linked list, we can add or remove elements from both sides. 



 

LinkedList class declaration 

 

Let's see the declaration for java.util.LinkedList class. 

 

1. public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, 

Deque<E>, Clon eable, Serializable 

Constructors of Java LinkedList 

Constructor Description 

LinkedList() It is used to construct an empty list. 

LinkedList(Collection<? 

extends E> c) 

It is used to construct a list containing the elements 

of the specified collection, in the order, they are 

returned by the collection's iterator. 

 

 

Methods of Java LinkedList 

Method Description 

boolean add(E e) It is used to append the specified element to the end 

of a list. 

void add(int index, E element) It is used to insert the specified element at the 

specified position index in a list. 

boolean addAll(Collection<? extends 

E> c) 

It is used to append all of the elements in the 

specified collection to the end of this list, in the order 

that they are returned by the specified collection's 

iterator. 

boolean addAll(Collection<? extends 

E> c) 

It is used to append all of the elements in the 

specified collection to the end of this list, in the order 

that they are returned by the specified collection's 

iterator. 

boolean addAll(int index, 

Collection<? extends E> c) 

It is used to append all the elements in the specified 

collection, starting at the specified position of the 

list. 

void addFirst(E e) It is used to insert the given element at the beginning 

of a list. 

void addLast(E e) It is used to append the given element to the end of a 

list. 

void clear() It is used to remove all the elements from a list. 

Object clone() It is used to return a shallow copy of an ArrayList. 



 

boolean contains(Object o) It is used to return true if a list contains a specified 

element. 

Iterator<E> descendingIterator() It is used to return an iterator over the elements in a 

deque in reverse sequential order. 

E element() It is used to retrieve the first element of a list. 

E get(int index) It is used to return the element at the specified 

position in a list. 

E getFirst() It is used to return the first element in a list. 

E getLast() It is used to return the last element in a list. 

int indexOf(Object o) It is used to return the index in a list of the first 

occurrence of the specified element, or -1 if the list 

does not contain any element. 

int lastIndexOf(Object o) It is used to return the index in a list of the last 

occurrence of the specified element, or -1 if the list 

does not contain any element. 

ListIterator<E> listIterator(int index) It is used to return a list-iterator of the elements in 

proper sequence, starting at the specified position in 

the list. 

boolean offer(E e) It adds the specified element as the last element of a 

list. 

boolean offerFirst(E e) It inserts the specified element at the front of a list. 

boolean offerLast(E e) It inserts the specified element at the end of a list. 

E peek() It retrieves the first element of a list 

E peekFirst() It retrieves the first element of a list or returns null 

if a list is empty. 

E peekLast() It retrieves the last element of a list or returns null if 

a list is empty. 

E poll() It retrieves and removes the first element of a list. 

E pollFirst() It retrieves and removes the first element of a list, or 

returns null if a list is empty. 

E pollLast() It retrieves and removes the last element of a list, or 

returns null if a list is empty. 



 

E pop() It pops an element from the stack represented by a 

list. 

void push(E e) It pushes an element onto the stack represented by a 

list. 

E remove() It is used to retrieve and removes the first element 

of a list. 

E remove(int index) It is used to remove the element at the specified 

position in a list. 

boolean remove(Object o) It is used to remove the first occurrence of the 

specified element in a list. 

E removeFirst() It removes and returns the first element from a list. 

boolean 

removeFirstOccurrence(Object o) 

It is used to remove the first occurrence of the 

specified element in a list (when traversing the list 

from head to tail). 

E removeLast() It removes and returns the last element from a list. 

boolean 

removeLastOccurrence(Object o) 

It removes the last occurrence of the specified 

element in a list (when traversing the list from head 

to tail). 

E set(int index, E element) It replaces the element at the specified position in a 

list with the specified element. 

Object[] toArray() It is used to return an array containing all the 

elements in a list in proper sequence (from first to 

the last element). 

<T> T[] toArray(T[] a) It returns an array containing all the elements in the 

proper sequence (from first to the last element); the 

runtime type of the returned array is that of the 

specified array. 

int size() It is used to return the number of elements in a list. 

 

 

Java LinkedList Example 
import java.util.*; 
public class LinkedList1{ 
public static void main(String args[]){ 

 

LinkedList<String> al=new 

LinkedList<String>(); al.add("Ravi"); 
al.add("Vijay"); 
al.add("Ravi"); 

al.add("Ajay"); 



 

 
Iterator<String> itr=al.iterator(); 
while(itr.hasNext()){ 



 

System.out.println(itr.next()); 
} 
} 

} 

Output: 

Ravi 

Vijay 

Ravi 

Ajay 

 

 

Java LinkedList example to add elements 

Here, we see different ways to add elements. 

import java.util.*; 
public class LinkedList2{ 

public static void main(String args[]){ 

LinkedList<String> ll=new LinkedList<String>(); 

System.out.println("Initial list of elements: 

"+ll); ll.add("Ravi"); 
ll.add("Vijay"); 
ll.add("Ajay"); 
System.out.println("After invoking add(E e) method: "+ll); 

//Adding an element at the specific position 

ll.add(1, "Gaurav"); 

System.out.println("After invoking add(int index, E element) method: "+ll); 

LinkedList<String> ll2=new LinkedList<String>(); 
ll2.add("Sonoo"); 
ll2.add("Hanumat"); 

//Adding second list elements to the first list 

ll.addAll(ll2); 

System.out.println("After invoking addAll(Collection<? extends E> c) method: "+ll); 

LinkedList<String> ll3=new LinkedList<String>(); 
ll3.add("John"); 
ll3.add("Rahul"); 

//Adding second list elements to the first list at specific position 

ll.addAll(1, ll3); 
System.out.println("After invoking addAll(int index, Collection<? extends E> c) method: 
"+ll); 

//Adding an element at the first position 

ll.addFirst("Lokesh"); 
System.out.println("After invoking addFirst(E e) method: "+ll); 

//Adding an element at the last position 

ll.addLast("Harsh"); 
System.out.println("After invoking addLast(E e) method: "+ll); 

 
} 

} 
Initial list of elements: [] 
After invoking add(E e) method: [Ravi, Vijay, Ajay] 

After invoking add(int index, E element) method: [Ravi, Gaurav, Vijay, Ajay] 

After invoking addAll(Collection<? extends E> c) method: 



 

[Ravi, Gaurav, Vijay, Ajay, Sonoo, Hanumat] 

After invoking addAll(int index, Collection<? extends E> c) method: 

[Ravi, John, Rahul, Gaurav, Vijay, Ajay, Sonoo, Hanumat] 
After invoking addFirst(E e) method: 

[Lokesh, Ravi, John, Rahul, Gaurav, Vijay, Ajay, Sonoo, 

Hanumat] After invoking addLast(E e) method: 



 

 [Lokesh, Ravi, John, Rahul, Gaurav, Vijay, Ajay, Sonoo, Hanumat, Harsh]  

 

 

Java LinkedList example to remove elements 

Here, we see different ways to remove an element. 

import java.util.*; 
public class LinkedList3 { 

 
public static void main(String [] args) 
{ 

LinkedList<String> ll=new LinkedList<String>(); 

ll.add("Ravi"); 
ll.add("Vijay"); 
ll.add("Ajay"); 
ll.add("Anuj"); 
ll.add("Gaurav"); 
ll.add("Harsh"); 
ll.add("Virat"); 
ll.add("Gaurav"); 
ll.add("Harsh"); 
ll.add("Amit"); 
System.out.println("Initial list of elements: "+ll); 

//Removing specific element from arraylist 

ll.remove("Vijay"); 
System.out.println("After invoking remove(object) method: "+ll); 

//Removing element on the basis of specific position 

ll.remove(0); 

System.out.println("After invoking remove(index) method: 

"+ll); LinkedList<String> ll2=new LinkedList<String>(); 

ll2.add("Ravi"); 
ll2.add("Hanumat"); 

// Adding new elements to arraylist 

ll.addAll(ll2); 

System.out.println("Updated list : 

"+ll); 

//Removing all the new elements from 

arraylist ll.removeAll(ll2); 
System.out.println("After invoking removeAll() method: "+ll); 

//Removing first element from the list 

ll.removeFirst(); 
System.out.println("After invoking removeFirst() method: "+ll); 

//Removing first element from the list 

ll.removeLast(); 
System.out.println("After invoking removeLast() method: "+ll); 

//Removing first occurrence of element from the list 

ll.removeFirstOccurrence("Gaurav"); 
System.out.println("After invoking removeFirstOccurrence() method: "+ll); 

//Removing last occurrence of element from the list 

ll.removeLastOccurrence("Harsh"); 

System.out.println("After invoking removeLastOccurrence() method: "+ll); 



 

 

//Removing all the elements available in the list 

ll.clear(); 
System.out.println("After invoking clear() method: "+ll); 

} 
} 



 

 
 

 

Java LinkedList Example to reverse a list of elements 
import java.util.*; 
public class LinkedList4{ 
public static void main(String args[]){ 

 

LinkedList<String> ll=new LinkedList<String>(); 

ll.add("Ravi"); 
ll.add("Vijay"); 
ll.add("Ajay"); 

//Traversing the list of elements in reverse 

order Iterator i=ll.descendingIterator(); 

while(i.hasNext()) 

{ 
System.out.println(i.next()); 

} 

 

} 
} 

Output: Ajay 

Vijay 

Ravi 

 

 

 

Java LinkedList Example: Book 
import java.util.*; 
class Book { 
int id; 

String name,author,publisher; 
int quantity; 

public Book(int id, String name, String author, String publisher, int quantity) { 

this.id = id; 

this.name = name; 

this.author = 

author; 
this.publisher = publisher; 
this.quantity = quantity; 

} 
} 

public class LinkedListExample { 
public static void main(String[] args) { 

Initial list of elements: [Ravi, Vijay, Ajay, Anuj, Gaurav, Harsh, Virat, Gaurav, Harsh, Amit] 

After invoking remove(object) method: [Ravi, Ajay, Anuj, Gaurav, Harsh, Virat, Gaurav, 

Harsh, Amit] After invoking remove(index) method: [Ajay, Anuj, Gaurav, Harsh, Virat, 

Gaurav, Harsh, Amit] Updated list : [Ajay, Anuj, Gaurav, Harsh, Virat, Gaurav, Harsh, Amit, 

Ravi, Hanumat] 

After invoking removeAll() method: [Ajay, Anuj, Gaurav, Harsh, Virat, Gaurav, Harsh, 

Amit] After invoking removeFirst() method: [Gaurav, Harsh, Virat, Gaurav, Harsh, Amit] 

After invoking removeLast() method: [Gaurav, Harsh, Virat, Gaurav, 

Harsh] After invoking removeFirstOccurrence() method: [Harsh, Virat, 

Gaurav, Harsh] After invoking removeLastOccurrence() method: [Harsh, 

Virat, Gaurav] 
After invoking clear() method: [] 



 

//Creating list of Books 
List<Book> list=new LinkedList<Book>(); 
//Creating Books 
Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8); 

Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw 

Hill",4); 



JAVA PROGRAMMING Page 
120 

 

Book b3=new Book(103,"Operating System","Galvin","Wiley",6); 

//Adding Books to list list.add(b1); 
list.add(b2); 
list.add(b3); 
//Traversing list 
for(Book b:list){ 
System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity); 
} 

} 
} 
Output: 

101 Let us C Yashwant Kanetkar BPB 8 

102 Data Communications & Networking Forouzan Mc Graw Hill 4 103 

Operating System Galvin Wiley 6 

 

Simple example of StringTokenizer class 

 

Let's see the simple example of StringTokenizer class that tokenizes a string "my name is khan" 

on the basis of whitespace. 

 

import java.util.StringTokenizer; 

public class Simple{ 

public static void main(String args[]){ 



JAVA PROGRAMMING Page 
121 

 

Output:my 

name 

is 

khan 

Output:Next token is : my 

StringTokenizer st = new StringTokenizer("my name is khan"," "); 

while (st.hasMoreTokens()) { 

System.out.println(st.nextToken()); 

} } } 

Example of nextToken(String delim) method of StringTokenizer class 

import java.util.*; 

public class Test { 

public static void main(String[] args) { 

StringTokenizer st = new StringTokenizer("my,name,is,khan"); 

// printing next token 

System.out.println("Next token is : " + st.nextToken(",")); 

} } 

 

 

 

java.util.Random 

▪ For using this class to generate random numbers, we have to first create an instance of this 

class and then invoke methods such as nextInt(), nextDouble(), nextLong() etc using that 

instance. 

▪ We can generate random numbers of types integers, float, double, long, booleans using this 

class. 

▪ We can pass arguments to the methods for placing an upper bound on the range of the 

numbers to be generated. For example, nextInt(6) will generate numbers in the range 0 to 5 

both inclusive. 
// A Java program to demonstrate random number generation 

// using java.util.Random; 

import java.util.Random; 

 

public class generateRandom{ 

 

public static void main(String args[]) 

{ 

// create instance of Random class 

Random rand = new Random(); 

 

// Generate random integers in range 0 to 999 

int rand_int1 = rand.nextInt(1000); 

int rand_int2 = rand.nextInt(1000); 



JAVA PROGRAMMING Page 
122 

 

 
Method Description 

Random Integers: 547 

Random Integers: 126 

Random Doubles: 0.8369779739988428 

Random Doubles: 0.5497554388209912 

// Print random integers 

System.out.println("Random Integers: "+rand_int1); 

System.out.println("Random Integers: "+rand_int2); 

 

// Generate Random doubles 

double rand_dub1 = rand.nextDouble(); 
double rand_dub2 = rand.nextDouble(); 

 

// Print random doubles 

System.out.println("Random Doubles: "+rand_dub1); 

System.out.println("Random Doubles: "+rand_dub2); 
}} 

Output: 

 

Java Scanner class 

 

There are various ways to read input from the keyboard, the java.util.Scanner class is one of them. 

The Java Scanner class breaks the input into tokens using a delimiter that is whitespace 

bydefault. It provides many methods to read and parse various primitive values. 

 

Java Scanner class is widely used to parse text for string and primitive types using regular 

expression. 

 

Java Scanner class extends Object class and implements Iterator and Closeable interfaces. 

 

Commonly used methods of Scanner class 

 

There is a list of commonly used Scanner class methods: 

 

 

 

 

 

 

public String next() 

 

it returns the next token from the scanner. 

public String nextLine() it moves the scanner position to the next line and returns the value 

as a string. 

public byte nextByte() it scans the next token as a byte. 



JAVA PROGRAMMING Page 
123 

 

public short nextShort() it scans the next token as a short value. 

public int nextInt() it scans the next token as an int value. 

public long nextLong() it scans the next token as a long value. 

public float nextFloat() it scans the next token as a float value. 

public double 

nextDouble() 

it scans the next token as a double value. 

 

 

Java Scanner Example to get input from console 

 

Let's see the simple example of the Java Scanner class which reads the int, string and double 

value as an input: 

 

import java.util.Scanner; 

class ScannerTest{ 

public static void main(String args[]){ 

Scanner sc=new Scanner(System.in); 

System.out.println("Enter your rollno"); 

int rollno=sc.nextInt(); 

System.out.println("Enter your name"); 

String name=sc.next(); 

System.out.println("Enter your fee"); 

double fee=sc.nextDouble(); 

System.out.println("Rollno:"+rollno+" name:"+name+" fee:"+fee); 

sc.close(); 

} } Output: 

 

Enter your rollno 

111 

Enter your name 

Ratan 

Enter 

450000 

Rollno:111 name:Ratan fee:450000 



JAVA PROGRAMMING Page 
124 

 

The current date is : Thu Jan 19 18:47:02 IST 2017 

15 days ago: Wed Jan 04 18:47:02 IST 2017 

4 months later: Thu May 04 18:47:02 IST 2017 

2 years later: Sat May 04 18:47:02 IST 2019 

Java Calendar Class 

 

Java Calendar class is an abstract class that provides methods for converting date between a 

specific instant in time and a set of calendar fields such as MONTH, YEAR, HOUR, etc. It 

inherits Object class and implements the Comparable interface. 

Java Calendar class declaration 

 

Let's see the declaration of java.util.Calendar class. 

 

2. public abstract class Calendar extends Object 

3. implements Serializable, Cloneable, Comparable<Calendar> 

 

Java Calendar Class Example 

 

import java.util.Calendar; 

public class CalendarExample1 { 

public static void main(String[] args) { 

Calendar calendar = Calendar.getInstance(); 

System.out.println("The current date is : " + calendar.getTime()); 

calendar.add(Calendar.DATE, -15); 

System.out.println("15 days ago: " + calendar.getTime()); 

calendar.add(Calendar.MONTH, 4); 

System.out.println("4 months later: " + calendar.getTime()); 

calendar.add(Calendar.YEAR, 2); 

System.out.println("2 years later: " + calendar.getTime()); 

} } 

 

Output: 

 



JAVA PROGRAMMING Page 

 

UNIT-IV 

 

Java AWT Tutorial 

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in 

java. 

 

Java AWT components are platform-dependent i.e. components are displayed according to the 

view of operating system. AWT is heavyweight i.e. its components are using the resources of OS. 

 

The java.awt package provides classes for AWT API such as TextField, Label, TextArea, 

RadioButton, CheckBox, Choice, List etc. 

 

Java AWT Hierarchy 

 

The hierarchy of Java AWT classes are given below. 

 

Container 

 

The Container is a component in AWT that can contain another components like buttons, 

textfields, labels etc. The classes that extends Container class are known as container such as 

Frame, Dialog and Panel. 

 

Window 

 

The window is the container that have no borders and menu bars. You must use frame, dialog or 

another window for creating a window. 

 

Panel 

 

The Panel is the container that doesn't contain title bar and menu bars. It can have other components 

like button, textfield etc. 

 

Frame 

 

The Frame is the container that contain title bar and can have menu bars. It can have other 

components like button, textfield etc. 

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list
https://www.javatpoint.com/java-awt-button


JAVA PROGRAMMING Page 

 

Useful Methods of Component class 

 

Method Description 

public void add(Component c) inserts a component on this component. 

public void setSize(int width,int 

height) 

sets the size (width and height) of the 

component. 

public void setLayout(LayoutManager 

m) 

defines the layout manager for the component. 

public void setVisible(boolean status) changes the visibility of the component, by 

default false. 

 

Java AWT Example 

 

To create simple awt example, you need a frame. There are two ways to create a frame in AWT. 

 

o By extending Frame class (inheritance) 

o By creating the object of Frame class (association) 

 

AWT Example by Inheritance 

 

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing 

Button component on the Frame. 

 

1. import java.awt.*; 

2. class First extends Frame{ 

3. First(){ 

4. Button b=new Button("click me"); 

5. b.setBounds(30,100,80,30);// setting button position 

6. add(b);//adding button into frame 

7. setSize(300,300);//frame size 300 width and 300 height 

8. setLayout(null);//no layout manager 

9. setVisible(true);//now frame will be visible, by default not visible 

10. } 

11. public static void main(String args[]){ 

12. First f=new First(); 

13. } } 



JAVA PROGRAMMING Page 

 

The setBounds(int x axis, int yaxis, int width, int height) method is used in the above example that 

sets the position of the awt button. 

 

 

 

AWT Example by Association 

 

Let's see a simple example of AWT where we are creating instance of Frame class. Here, we are 

showing Button component on the Frame. 

 

1. import java.awt.*; 

2. class First2{ 

3. First2(){ 

4. Frame f=new Frame(); 

5. Button b=new Button("click me"); 

6. b.setBounds(30,50,80,30); 

7. f.add(b); 

8. f.setSize(300,300); 

9. f.setLayout(null); 

10. f.setVisible(true); 

11. } 

12. public static void main(String args[]){ 

13. First2 f=new First2(); 

14. }} 



JAVA PROGRAMMING Page 

 

AWT Controls: 

AWT Label: 

The object of Label class is a component for placing text in a container. It is used to display a 

single line of read only text. The text can be changed by an application but a user cannot edit it 

directly. 

AWT Label Class Declaration 

 

1. public class Label extends Component implements Accessible 

 

Java Label Example 

 

1. import java.awt.*; 

 

2. class LabelExample{ 

 

3. public static void main(String args[]){ 

 

4. Frame f= new Frame("Label Example"); 

 

5. Label l1,l2; 

 

6. l1=new Label("First Label."); 

7. l1.setBounds(50,100, 100,30); 

8. l2=new Label("Second Label."); 

9. l2.setBounds(50,150, 100,30); 

10. f.add(l1); f.add(l2); 

11. f.setSize(400,400); 

12. f.setLayout(null); 

 

13. f.setVisible(true); 

 

14. } 

 

15. } 

 

Output: 

https://www.javatpoint.com/object-and-class-in-java


JAVA PROGRAMMING Page 

 

 
 

Java AWT Button 

 

The button class is used to create a labeled button that has platform independent implementation. 

The application result in some action when the button is pushed. 

AWT Button Class declaration 

 

1. public class Button extends Component implements Accessible 

 

Java AWT Button Example 

 

1. import java.awt.*; 

 

2. public class ButtonExample { 

 

3. public static void main(String[] args) { 

 

4. Frame f=new Frame("Button Example"); 

 

5. Button b=new Button("Click Here"); 

6. b.setBounds(50,100,80,30); 

7. f.add(b); 

 

8. f.setSize(400,400); 

 

9. f.setLayout(null); 

 

10. f.setVisible(true); 

 

11. } 

 

12. } 

 

Output: 



JAVA PROGRAMMING Page 

 

 
 

Java AWT Scrollbar 

 

The object of  Scrollbar  class  is  used  to  add  horizontal  and  vertical  scrollbar.  Scrollbar  is  

a GUI component allows us to see invisible number of rows and columns. 

 

AWT Scrollbar class declaration 

 

1. public class Scrollbar extends Component implements Adjustable, Accessible 

 

 

Java AWT Scrollbar Example 

 

1. import java.awt.*; 

2. class ScrollbarExample{ 

3. ScrollbarExample(){ 

4. Frame f= new Frame("Scrollbar Example"); 

5. Scrollbar s=new Scrollbar(); 

6. s.setBounds(100,100, 50,100); 

7. f.add(s); 

8. f.setSize(400,400); 

9. f.setLayout(null); 

10. f.setVisible(true); 

11. } 

12. public static void main(String args[]){ 

13. new ScrollbarExample(); 

14. } 

15. } 

 

Output: 

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/gui-full-form


JAVA PROGRAMMING Page 

 

 
 

 

 

Text Components: 

Java AWT TextField 

 

The object of a TextField class is a text component that allows the editing of a single line text. It 

inherits TextComponent class. 

AWT TextField Class Declaration 

 

1. public class TextField extends TextComponent 

 

Java AWT TextField Example 

 

1. import java.awt.*; 

 

2. class TextFieldExample{ 

 

3. public static void main(String args[]){ 

 

4. Frame f= new Frame("TextField Example"); 

 

5. TextField t1,t2; 

 

6. t1=new TextField("Welcome to Javatpoint."); 

7. t1.setBounds(50,100, 200,30); 

8. t2=new TextField("AWT Tutorial"); 

9. t2.setBounds(50,150, 200,30); 

10. f.add(t1); f.add(t2); 

11. f.setSize(400,400); 

https://www.javatpoint.com/object-and-class-in-java


JAVA PROGRAMMING Page 

 

12. f.setLayout(null); 

 

13. f.setVisible(true); 

 

14. } 

 

15. } 

 

Output: 

 

Java AWT TextArea 

 

The object of a TextArea class is a multi line region that displays text. It allows the editing of 

multiple line text. It inherits TextComponent class. 

AWT TextArea Class Declaration 

 

1. public class TextArea extends TextComponent 

 

Java AWT TextArea Example 

 

1. import java.awt.*; 

 

2. public class TextAreaExample 

3. { 

4. TextAreaExample(){ 

 

5. Frame f= new Frame(); 

 

6. TextArea area=new TextArea("Welcome to javatpoint"); 7.

 area.setBounds(10,30, 300,300); 

8. f.add(area); 

https://www.javatpoint.com/object-and-class-in-java


JAVA PROGRAMMING Page 

 

9. f.setSize(400,400); 

 

10. f.setLayout(null); 

 

11. f.setVisible(true); 

 

12. } 

 

13. public static void main(String args[]) 

 

14. { 

 

15. new TextAreaExample(); 

 

16. } 

 

17. } 

 

Output: 

 

 

 

Java AWT Checkbox 

 

The Checkbox class is used to create a checkbox. It is used to turn an option on (true) or off (false). 

Clicking on a Checkbox changes its state from "on" to "off" or from "off" to "on". 

AWT Checkbox Class Declaration 

 

1. public class Checkbox extends Component implements ItemSelectable, Accessible 

 

Java AWT Checkbox Example 

 

1. import java.awt.*; 

 

2. public class CheckboxExample 

3. { 

4. CheckboxExample(){ 



JAVA PROGRAMMING Page 

 

5. Frame f= new Frame("Checkbox Example"); 

 

6. Checkbox checkbox1 = new Checkbox("C++"); 

7. checkbox1.setBounds(100,100, 50,50); 

8. Checkbox checkbox2 = new Checkbox("Java", true); 

9. checkbox2.setBounds(100,150, 50,50); 

10. f.add(checkbox1); 

 

11. f.add(checkbox2); 

 

12. f.setSize(400,400); 

 

13. f.setLayout(null); 

 

14. f.setVisible(true); 

 

15. } 

 

16. public static void main(String args[]) 

 

17. { 

 

18. new CheckboxExample(); 

 

19. } 

 

20. } 

 

Output: 

 



JAVA PROGRAMMING Page 

 

Java AWT CheckboxGroup 

 

The object of CheckboxGroup class is used to group together a set of Checkbox. At a time only 

one check box button is allowed to be in "on" state and remaining check box button in "off" state. 

It inherits the object class. 

Note: CheckboxGroup enables you to create radio buttons in AWT. There is no special control for 

creating radio buttons in AWT. 

AWT CheckboxGroup Class Declaration 

 

1. public class CheckboxGroup extends Object implements Serializable 

Java AWT CheckboxGroup Example 

1. import java.awt.*; 

 

2. public class CheckboxGroupExample 

3. { 

4. CheckboxGroupExample(){ 

 

5. Frame f= new Frame("CheckboxGroup Example"); 

 

6. CheckboxGroup cbg = new CheckboxGroup(); 

 

7. Checkbox checkBox1 = new Checkbox("C++", cbg, false); 

8. checkBox1.setBounds(100,100, 50,50); 

9. Checkbox checkBox2 = new Checkbox("Java", cbg, true); 

 

10. checkBox2.setBounds(100,150, 50,50); 

 

11. f.add(checkBox1); 

 

12. f.add(checkBox2); 

 

13. f.setSize(400,400); 

 

14. f.setLayout(null); 

 

15. f.setVisible(true); 

 

16. } 

 

17. public static void main(String args[]) 

https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/object-class


JAVA PROGRAMMING Page 

 

18. { 

 

19. new CheckboxGroupExample(); 

 

20. } 

 

21. } 

 

Output: 

 

Java AWT Choice 

 

The object of Choice class is used to show popup menu of choices. Choice selected by user is 

shown on the top of a menu. It inherits Component class. 

AWT Choice Class Declaration 

 

1. public class Choice extends Component implements ItemSelectable, Accessible 

 

Java AWT Choice Example 

 

1. import java.awt.*; 

 

2. public class ChoiceExample 

3. { 

4. ChoiceExample(){ 

 

5. Frame f= new Frame(); 

 

6. Choice c=new Choice(); 

 

7. c.setBounds(100,100, 75,75); 

 

8. c.add("Item 1"); 

 

9. c.add("Item 2"); 

https://www.javatpoint.com/java-awt-popupmenu


JAVA PROGRAMMING Page 

 

10. c.add("Item 3"); 

 

11. c.add("Item 4"); 

 

12. c.add("Item 5"); 

 

13. f.add(c); 

 

14. f.setSize(400,400); 

 

15. f.setLayout(null); 

 

16. f.setVisible(true); 

 

17. } 

 

18. public static void main(String args[]) 

 

19. { 

 

20. new ChoiceExample(); 

 

21. } 

 

22. } 

 

Output: 

 

 

 

Java AWT List 

 

The object of List class represents a list of text items. By the help of list, user can choose either 

one item or multiple items. It inherits Component class. 

AWT List class Declaration 



JAVA PROGRAMMING Page 

 

1. public class List extends Component implements ItemSelectable, Accessible 

Java AWT List Example 

1. import java.awt.*; 

 

2. public class ListExample 

3. { 

4. ListExample(){ 

 

5. Frame f= new Frame(); 

 

6. List l1=new List(5); 

 

7. l1.setBounds(100,100, 75,75); 

 

8. l1.add("Item 1"); 

 

9. l1.add("Item 2"); 

 

10. l1.add("Item 3"); 

 

11. l1.add("Item 4"); 

 

12. l1.add("Item 5"); 

 

13. f.add(l1); 

 

14. f.setSize(400,400); 

 

15. f.setLayout(null); 

 

16. f.setVisible(true); 

 

17. } 

 

18. public static void main(String args[]) 

 

19. { 

 

20. new ListExample(); 

 

21. } 

 

22. } 

 

Output: 



JAVA PROGRAMMING Page 

 

 
 

Java AWT Dialog 

 

The Dialog control represents a top level window with a border and a title used to take some form 

of input from the user. It inherits the Window class. 

 

Unlike Frame, it doesn't have maximize and minimize buttons. 

 

Frame vs Dialog 

 

Frame and Dialog both inherits Window class. Frame has maximize and minimize buttons but 

Dialog doesn't have. 

 

AWT Dialog class declaration 

 

1. public class Dialog extends Window 

 

Java AWT Dialog Example 

 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class DialogExample { 

4. private static Dialog d; 

5. DialogExample() { 

6. Frame f= new Frame(); 

7. d = new Dialog(f , "Dialog Example", true); 

8. d.setLayout( new FlowLayout() ); 

9. Button b = new Button ("OK"); 

10. b.addActionListener ( new ActionListener() 

11. { 

12. public void actionPerformed( ActionEvent e ) 

13. { 

14. DialogExample.d.setVisible(false); 

15. } 

16. }); 

https://www.javatpoint.com/java-awt-button


JAVA PROGRAMMING Page 

 

17. d.add( new Label ("Click button to continue.")); 

18. d.add(b); 

19. d.setSize(300,300); 

20. d.setVisible(true); 

21. } 

22. public static void main(String args[]) 

23. { 

24. new DialogExample(); 

25. } 

26. } 

 

 

Output: 

 

 

Java AWT MenuItem and Menu 

 

The object of MenuItem class adds a simple labeled menu item on menu. The items used in a menu 

must belong to the MenuItem or any of its subclass. 

 

The object of Menu class is a pull down menu component which is displayed on the menu bar. It 

inherits the MenuItem class. 

 

AWT MenuItem class declaration 

 

1. public class MenuItem extends MenuComponent implements Accessible 

 

AWT Menu class declaration 

 

1. public class Menu extends MenuItem implements MenuContainer, Accessible 

 

Java AWT MenuItem and Menu Example 

 

1. import java.awt.*; 

2. class MenuExample 

3. { 
4. MenuExample(){ 



JAVA PROGRAMMING Page 

 

5. Frame f= new Frame("Menu and MenuItem Example"); 

6. MenuBar mb=new MenuBar(); 

7. Menu menu=new Menu("Menu"); 

8. Menu submenu=new Menu("Sub Menu"); 

9. MenuItem i1=new MenuItem("Item 1"); 

10. MenuItem i2=new MenuItem("Item 2"); 

11. MenuItem i3=new MenuItem("Item 3"); 

12. MenuItem i4=new MenuItem("Item 4"); 

13. MenuItem i5=new MenuItem("Item 5"); 

14. menu.add(i1); 

15. menu.add(i2); 

16. menu.add(i3); 

17. submenu.add(i4); 

18. submenu.add(i5); 

19. menu.add(submenu); 

20. mb.add(menu); 

21. f.setMenuBar(mb); 

22. f.setSize(400,400); 

23. f.setLayout(null); 

24. f.setVisible(true); 

25. } 

26. public static void main(String args[]) 

27. { 

28. new MenuExample(); 

29. } 

30. } 

 

Output: 

 

 

 

Event and Listener (Java Event Handling) 



JAVA PROGRAMMING Page 

 

Changing the state of an object is known as an event. For example, click on button, dragging mouse etc. 

The java.awt.event package provides many event classes and Listener interfaces for event handling. 

 

Java Event classes and Listener interfaces 

 

Event Classes Listener Interfaces 

ActionEvent ActionListener 

MouseEvent MouseListener and MouseMotionListener 

MouseWheelEvent MouseWheelListener 

KeyEvent KeyListener 

ItemEvent ItemListener 

TextEvent TextListener 

AdjustmentEvent AdjustmentListener 

WindowEvent WindowListener 

ComponentEvent ComponentListener 

ContainerEvent ContainerListener 

FocusEvent FocusListener 

 

Steps to perform Event Handling 

 

Following steps are required to perform event handling: 

 

1. Register the component with the Listener 

 

Registration Methods 



JAVA PROGRAMMING Page 

 

For registering the component with the Listener, many classes provide the registration methods. 

For example: 

o Button 

o public void addActionListener(ActionListener a){} 

 

o MenuItem 

o public void addActionListener(ActionListener a){} 

 

o TextField 

o public void addActionListener(ActionListener a){} 

 

o public void addTextListener(TextListener a){} 

o TextArea 

 

o public void addTextListener(TextListener a){} 

o Checkbox 

 

o public void addItemListener(ItemListener a){} 

o Choice 

 

o public void addItemListener(ItemListener a){} 

o List 

 

o public void addActionListener(ActionListener a){} 

o public void addItemListener(ItemListener a){} 

 

Java event handling by implementing ActionListener 

 

1. import java.awt.*; 

 

2. import java.awt.event.*; 

 

3. class AEvent extends Frame implements ActionListener{ 

 

4. TextField tf; 

 

5. AEvent() 

6. { 



JAVA PROGRAMMING Page 

 

7. //create components 

 

8. tf=new TextField(); 

 

9. tf.setBounds(60,50,170,20); 

 

10. Button b=new Button("click me"); 

11. b.setBounds(100,120,80,30); 

12. 

 

13. //register listener 

 

14. b.addActionListener(this);//passing current instance 

15. 

16. //add components and set size, layout and visibility 

 

17. add(b);add(tf); 

18. setSize(300,300); 

19. setLayout(null); 

 

20. setVisible(true); 

 

21. } 

 

22. public void actionPerformed(ActionEvent e){ 

 

23. tf.setText("Welcome"); 

 

24. } 

 

25. public static void main(String args[]){ 

 

26. new AEvent(); 

 

27. } 

 

28. } 

 

public void setBounds(int xaxis, int yaxis, int width, int height); have been used in the above 

example that sets the position of the component it may be button, textfield etc. 



JAVA PROGRAMMING Page 

 

 

 

 

 

 

 

Output: 

 

 

Java MouseListener Interface 

 

The Java MouseListener is notified whenever you change the state of mouse. It is notified against 

MouseEvent. The MouseListener interface is found in java.awt.event package. It has five methods. 

Methods of MouseListener interface 

 

The signature of 5 methods found in MouseListener interface are given below: 

 

1. public abstract void mouseClicked(MouseEvent e); 

 

2. public abstract void mouseEntered(MouseEvent e); 

 

3. public abstract void mouseExited(MouseEvent e); 

 

4. public abstract void mousePressed(MouseEvent e); 

 

5. public abstract void mouseReleased(MouseEvent e); 

 

Java 

MouseListener 

Example 1 

1. import java.awt.*; 

 

2. import java.awt.event.*; 

 

3. public class MouseListenerExample extends Frame implements MouseListener{ 



JAVA PROGRAMMING Page 

 

 

4. Label l; 



JAVA PROGRAMMING Page 

 

5. MouseListenerExample(){ 

 

6. addMouseListener(this); 

7. 

8. l=new Label(); 

 

9. l.setBounds(20,50,100,20); 

 

10. add(l); 

 

11. setSize(300,300); 

 

12. setLayout(null); 

 

13. setVisible(true); 

 

14. } 

 

15. public void mouseClicked(MouseEvent e) { 

 

16. l.setText("Mouse Clicked"); 

 

17. } 

 

18. public void mouseEntered(MouseEvent e) { 

 

19. l.setText("Mouse Entered"); 

 

20. } 

 

21. public void mouseExited(MouseEvent e) { 

 

22. l.setText("Mouse Exited"); 

 

23. } 

 

24. public void mousePressed(MouseEvent e) { 

 

25. l.setText("Mouse Pressed"); 

 

26. } 

 

27. public void mouseReleased(MouseEvent e) { 

 

28. l.setText("Mouse Released"); 

 

29. } 



JAVA PROGRAMMING Page 

 

30. public static void main(String[] args) { 

 

31. new MouseListenerExample(); 

 

32. } 

 

33. } 

 

Output: 

 

 

 

Java MouseListener 

Example 2 

1. import java.awt.*; 

 

2. import java.awt.event.*; 

 

3. public class MouseListenerExample2 extends Frame implements MouseListener{ 

 

4. MouseListenerExample2(){ 

 

5. addMouseListener(this); 

6. 

7. setSize(300,300); 

 

8. setLayout(null); 

 

9. setVisible(true); 

 

10. } 

 

11. public void mouseClicked(MouseEvent e) { 



JAVA PROGRAMMING Page 

 

12. Graphics g=getGraphics(); 

 

13. g.setColor(Color.BLUE); 

 

14. g.fillOval(e.getX(),e.getY(),30,30); 

 

15. } 

 

16. public void mouseEntered(MouseEvent e) {} 

 

17. public void mouseExited(MouseEvent e) {} 

 

18. public void mousePressed(MouseEvent e) {} 

 

19. public void mouseReleased(MouseEvent e) {} 

20. 

21. public static void main(String[] args) { 

 

22. new MouseListenerExample2(); 

 

23. } 

 

24. } 

 

Output: 

 

Java KeyListener Interface 

 

The Java KeyListener is notified whenever you change the state of key. It is notified against 

KeyEvent. The KeyListener interface is found in java.awt.event package. It has three methods. 

Methods of KeyListener interface 

 

The signature of 3 methods found in KeyListener interface are given below: 

 

1. public abstract void keyPressed(KeyEvent e); 

 

2. public abstract void keyReleased(KeyEvent e); 



JAVA PROGRAMMING Page 

 

3. public abstract void keyTyped(KeyEvent e); 

 

Java 

KeyListener 

Example 1 

1. import java.awt.*; 

 

2. import java.awt.event.*; 

 

3. public class KeyListenerExample extends Frame implements KeyListener{ 

 

4. Label l; 

 

5. TextArea area; 

 

6. KeyListenerExample(){ 

7. 

8. l=new Label(); 

 

9. l.setBounds(20,50,100,20); 

 

10. area=new TextArea(); 

 

11. area.setBounds(20,80,300, 300); 

 

12. area.addKeyListener(this); 

13. 

14. add(l);add(area); 

 

15. setSize(400,400); 

 

16. setLayout(null); 

 

17. setVisible(true); 

 

18. } 

 

19. public void keyPressed(KeyEvent e) { 

 

20. l.setText("Key Pressed"); 

 

21. } 



JAVA PROGRAMMING Page 

 

 

22. public void keyReleased(KeyEvent e) { 



JAVA PROGRAMMING Page 

 

23. l.setText("Key Released"); 

 

24. } 

 

25. public void keyTyped(KeyEvent e) { 

 

26. l.setText("Key Typed"); 

 

27. } 

28. 

29. public static void main(String[] args) { 

 

30. new KeyListenerExample(); 

 

31. } 

 

32. } 

 

Output: 

 

 

 

Java KeyListener 

 

Example 2: Count Words & Characters 

 

1. import java.awt.*; 

 

2. import java.awt.event.*; 

 

3. public class KeyListenerExample extends Frame implements KeyListener{ 

 

4. Label l; 

 

5. TextArea area; 



JAVA PROGRAMMING Page 

 

6. KeyListenerExample(){ 

7. 

8. l=new Label(); 

 

9. l.setBounds(20,50,200,20); 

 

10. area=new TextArea(); 

 

11. area.setBounds(20,80,300, 300); 

 

12. area.addKeyListener(this); 

13. 

14. add(l);add(area); 

 

15. setSize(400,400); 

 

16. setLayout(null); 

 

17. setVisible(true); 

 

18. } 

 

19. public void keyPressed(KeyEvent e) {} 

 

20. public void keyReleased(KeyEvent e) { 

 

21. String text=area.getText(); 

 

22. String words[]=text.split("\\s"); 

 

23. l.setText("Words: "+words.length+" Characters:"+text.length()); 

 

24. } 

 

25. public void keyTyped(KeyEvent e) {} 

26. 

27. public static void main(String[] args) { 

 

28. new KeyListenerExample(); 

 

29. } 

 

30. } 



JAVA PROGRAMMING Page 

 

Output: 

 

Java Adapter Classes 

 

Java adapter classes provide the default implementation of listener interfaces. If you inherit the 

adapter class, you will not be forced to provide the implementation of all the methods of listener 

interfaces. So it saves code. 

 

The adapter classes are found in java.awt.event package. The Adapter classes with their 

corresponding listener interfaces are given below. 

 

java.awt.event Adapter classes 

 

Adapter class Listener interface 

WindowAdapter WindowListener 

KeyAdapter KeyListener 

MouseAdapter MouseListener 

MouseMotionAdapter MouseMotionListener 

FocusAdapter FocusListener 

ComponentAdapter ComponentListener 

ContainerAdapter ContainerListener 

HierarchyBoundsAdapter HierarchyBoundsListener 

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/package
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mousemotionlistener


JAVA PROGRAMMING Page 

 

 

 

java.awt.dnd Adapter classes 

 

Adapter class Listener interface 

DragSourceAdapter DragSourceListener 

DragTargetAdapter DragTargetListener 

 

Java MouseAdapter Example 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class MouseAdapterExample extends MouseAdapter{ 

4. Frame f; 

5. MouseAdapterExample(){ 

6. f=new Frame("Mouse Adapter"); 

7. f.addMouseListener(

this); 8. 

9. f.setSize(300,300); 

10. f.setLayout(null); 

11. f.setVisible(true); 

12. } 

13. public void mouseClicked(MouseEvent e) { 

14. Graphics g=f.getGraphics(); 

15. g.setColor(Color.BLUE); 

16. g.fillOval(e.getX(),e.getY(),30,30); 

17. } 

18. 

19. public static void main(String[] args) { 

20. new MouseAdapterExample(); 

21. } 

22. }  

 

 

 



JAVA PROGRAMMING Page 

 

Output: 

 



JAVA PROGRAMMING Page 

 

 

 

Java MouseMotionAdapter Example 

 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class MouseMotionAdapterExample extends MouseMotionAdapter{ 

4. Frame f; 

5. MouseMotionAdapterExample(){ 

6. f=new Frame("Mouse Motion Adapter"); 

7. f.addMouseMotionListene

r(this); 8. 

9. f.setSize(300,300); 

10. f.setLayout(null); 

11. f.setVisible(true); 

12. } 

13. public void mouseDragged(MouseEvent e) { 

14. Graphics g=f.getGraphics(); 

15. g.setColor(Color.ORANGE); 

16. g.fillOval(e.getX(),e.getY(),20,20); 

17. } 

18. public static void main(String[] args) { 

19. new MouseMotionAdapterExample(); 

20. } 

21. } 

Output

: 

 
 



JAVA PROGRAMMING Page 

 

Java KeyAdapter Example 

 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class KeyAdapterExample extends KeyAdapter{ 

4. Label l; 

5. TextArea area; 

6. Frame f; 

7. KeyAdapterExample(){ 

8. f=new Frame("Key Adapter"); 

 

9. l=new Label(); 

10. l.setBounds(20,50,200,20); 

11. area=new TextArea(); 

12. area.setBounds(20,80,300, 300); 

13.

 area.addKeyListener(

this); 14. 

15. f.add(l);f.add(area); 

16. f.setSize(400,400); 

17. f.setLayout(null); 

18. f.setVisible(true); 

19. } 

20. public void keyReleased(KeyEvent e) { 

21. String text=area.getText(); 

22. String words[]=text.split("\\s"); 

23. l.setText("Words: "+words.length+" Characters:"+text.length()); 

24. } 

25. 

26. public static void main(String[] args) { 

27. new KeyAdapterExample(); 

28. } 

29. } 

Output

: 



JAVA PROGRAMMING Page 

 

 
 

 

 

 

 

 

 

 

UNIT-V 

 

Java AWT Tutorial 
 

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in 

java. 

 

Java AWT components are platform-dependent i.e. components are displayed according to the 

view of operating system. AWT is heavyweight i.e. its components are using the resources of OS. 

 

The java.awt package provides classes for AWT API such as TextField, Label, TextArea, 

RadioButton, CheckBox, Choice, List etc. 

 

Java AWT Hierarchy 
 

The hierarchy of Java AWT classes are given below. 

 

Container 
 

The Container is a component in AWT that can contain another components like buttons, 

textfields, labels etc. The classes that extends Container class are known as container such as 

Frame, Dialog and Panel. 

 

Window 
 

The window is the container that have no borders and menu bars. You must use frame, dialog or 

another window for creating a window. 

 

https://www.javatpoint.com/package
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-awt-textfield
https://www.javatpoint.com/java-awt-label
https://www.javatpoint.com/java-awt-textarea
https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/java-awt-choice
https://www.javatpoint.com/java-awt-list
https://www.javatpoint.com/java-awt-button


JAVA PROGRAMMING Page 

 

Panel 
 

The Panel is the container that doesn't contain title bar and menu bars. It can have other components 

like button, textfield etc. 

 

Frame 
 

The Frame is the container that contain title bar and can have menu bars. It can have other 

components like button, textfield etc. 



JAVA PROGRAMMING Page 

 

Useful Methods of Component class 
 

Method Description 

public void add(Component c) inserts a component on this component. 

public void setSize(int width,int 

height) 

sets the size (width and height) of the 

component. 

public void setLayout(LayoutManager 

m) 

defines the layout manager for the component. 

public void setVisible(boolean status) changes the visibility of the component, by 

default false. 

 
Java AWT Example 

 

To create simple awt example, you need a frame. There are two ways to create a frame in AWT. 

 
o By extending Frame class (inheritance) 

o By creating the object of Frame class (association) 

 

AWT Example by Inheritance 
 

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing 

Button component on the Frame. 

 
1. import java.awt.*; 

2. class First extends Frame{ 

3. First(){ 

4. Button b=new Button("click me"); 

5. b.setBounds(30,100,80,30);// setting button position 

6. add(b);//adding button into frame 

7. setSize(300,300);//frame size 300 width and 300 height 

8. setLayout(null);//no layout manager 

9. setVisible(true);//now frame will be visible, by default not visible 

10. } 

11. public static void main(String args[]){ 

12. First f=new First(); 

13. } } 



JAVA PROGRAMMING Page 

 

The setBounds(int x axis, int yaxis, int width, int height) method is used in the above example that 

sets the position of the awt button. 
 

 
 

AWT Example by Association 
 

Let's see a simple example of AWT where we are creating instance of Frame class. Here, we are 

showing Button component on the Frame. 

 
1. import java.awt.*; 

2. class First2{ 

3. First2(){ 

4. Frame f=new Frame(); 

5. Button b=new Button("click me"); 

6. b.setBounds(30,50,80,30); 

7. f.add(b); 

8. f.setSize(300,300); 

9. f.setLayout(null); 

10. f.setVisible(true); 

11. } 

12. public static void main(String args[]){ 

13. First2 f=new First2(); 

14. }} 



JAVA PROGRAMMING Page 

 

AWT Controls: 
 

AWT Label: 
 

The object of Label class is a component for placing text in a container. It is used to display a 

single line of read only text. The text can be changed by an application but a user cannot edit it 

directly. 

AWT Label Class Declaration 
 

1. public class Label extends Component implements Accessible 
 

Java Label Example 
 

1. import java.awt.*; 
 

2. class LabelExample{ 
 

3. public static void main(String args[]){ 
 

4. Frame f= new Frame("Label Example"); 
 

5. Label l1,l2; 
 

6. l1=new Label("First Label."); 

7. l1.setBounds(50,100, 100,30); 

8. l2=new Label("Second Label."); 

9. l2.setBounds(50,150, 100,30); 

10. f.add(l1); f.add(l2); 

11. f.setSize(400,400); 

12. f.setLayout(null); 
 

13. f.setVisible(true); 
 

14. } 
 

15. } 
 

Output: 

https://www.javatpoint.com/object-and-class-in-java


JAVA PROGRAMMING Page 

 

 
 

Java AWT Button 
 

The button class is used to create a labeled button that has platform independent implementation. 

The application result in some action when the button is pushed. 

AWT Button Class declaration 
 

1. public class Button extends Component implements Accessible 
 

Java AWT Button Example 
 

1. import java.awt.*; 
 

2. public class ButtonExample { 
 

3. public static void main(String[] args) { 
 

4. Frame f=new Frame("Button Example"); 
 

5. Button b=new Button("Click Here"); 

6. b.setBounds(50,100,80,30); 

7. f.add(b); 
 

8. f.setSize(400,400); 
 

9. f.setLayout(null); 
 

10. f.setVisible(true); 
 

11. } 
 

12. } 
 

Output: 



JAVA PROGRAMMING Page 

 

 
 

Java AWT Scrollbar 

 

The object of  Scrollbar  class  is  used  to  add  horizontal  and  vertical  scrollbar.  Scrollbar  is  

a GUI component allows us to see invisible number of rows and columns. 

 

AWT Scrollbar class declaration 
 
1. public class Scrollbar extends Component implements Adjustable, Accessible 

 

 
Java AWT Scrollbar Example 

 

1. import java.awt.*; 

2. class ScrollbarExample{ 

3. ScrollbarExample(){ 

4. Frame f= new Frame("Scrollbar Example"); 

5. Scrollbar s=new Scrollbar(); 

6. s.setBounds(100,100, 50,100); 

7. f.add(s); 

8. f.setSize(400,400); 

9. f.setLayout(null); 

10. f.setVisible(true); 

11. } 

12. public static void main(String args[]){ 

13. new ScrollbarExample(); 

14. } 

15. } 

 

Output: 

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/gui-full-form


JAVA PROGRAMMING Page 

 

 
 

 

 

Text Components: 
 

Java AWT TextField 
 

The object of a TextField class is a text component that allows the editing of a single line text. It 

inherits TextComponent class. 

AWT TextField Class Declaration 
 

1. public class TextField extends TextComponent 
 

Java AWT TextField Example 
 

1. import java.awt.*; 
 

2. class TextFieldExample{ 
 

3. public static void main(String args[]){ 
 

4. Frame f= new Frame("TextField Example"); 
 

5. TextField t1,t2; 
 

6. t1=new TextField("Welcome to Javatpoint."); 

7. t1.setBounds(50,100, 200,30); 

8. t2=new TextField("AWT Tutorial"); 

9. t2.setBounds(50,150, 200,30); 

10. f.add(t1); f.add(t2); 

11. f.setSize(400,400); 

https://www.javatpoint.com/object-and-class-in-java


JAVA PROGRAMMING Page 

 

12. f.setLayout(null); 
 

13. f.setVisible(true); 
 

14. } 
 

15. } 
 

Output: 
 

Java AWT TextArea 
 

The object of a TextArea class is a multi line region that displays text. It allows the editing of 

multiple line text. It inherits TextComponent class. 

AWT TextArea Class Declaration 
 

1. public class TextArea extends TextComponent 
 

Java AWT TextArea Example 
 

1. import java.awt.*; 
 

2. public class TextAreaExample 

3. { 

4. TextAreaExample(){ 
 

5. Frame f= new Frame(); 
 

6. TextArea area=new TextArea("Welcome to javatpoint"); 7.

 area.setBounds(10,30, 300,300); 

8. f.add(area); 

https://www.javatpoint.com/object-and-class-in-java


JAVA PROGRAMMING Page 

 

9. f.setSize(400,400); 
 

10. f.setLayout(null); 
 

11. f.setVisible(true); 
 

12. } 
 

13. public static void main(String args[]) 
 

14. { 
 

15. new TextAreaExample(); 
 

16. } 
 

17. } 
 

Output: 
 

 

 
Java AWT Checkbox 

 

The Checkbox class is used to create a checkbox. It is used to turn an option on (true) or off (false). 

Clicking on a Checkbox changes its state from "on" to "off" or from "off" to "on". 

AWT Checkbox Class Declaration 
 

1. public class Checkbox extends Component implements ItemSelectable, Accessible 
 

Java AWT Checkbox Example 
 

1. import java.awt.*; 
 

2. public class CheckboxExample 

3. { 

4. CheckboxExample(){ 



JAVA PROGRAMMING Page 

 

5. Frame f= new Frame("Checkbox Example"); 
 

6. Checkbox checkbox1 = new Checkbox("C++"); 

7. checkbox1.setBounds(100,100, 50,50); 

8. Checkbox checkbox2 = new Checkbox("Java", true); 

9. checkbox2.setBounds(100,150, 50,50); 

10. f.add(checkbox1); 
 

11. f.add(checkbox2); 
 

12. f.setSize(400,400); 
 

13. f.setLayout(null); 
 

14. f.setVisible(true); 
 

15. } 
 

16. public static void main(String args[]) 
 

17. { 
 

18. new CheckboxExample(); 
 

19. } 
 

20. } 
 

Output: 
 



JAVA PROGRAMMING Page 

 

Java AWT CheckboxGroup 
 

The object of CheckboxGroup class is used to group together a set of Checkbox. At a time only 

one check box button is allowed to be in "on" state and remaining check box button in "off" state. 

It inherits the object class. 

Note: CheckboxGroup enables you to create radio buttons in AWT. There is no special control for 

creating radio buttons in AWT. 

AWT CheckboxGroup Class Declaration 
 

1. public class CheckboxGroup extends Object implements Serializable 

Java AWT CheckboxGroup Example 

1. import java.awt.*; 
 

2. public class CheckboxGroupExample 

3. { 

4. CheckboxGroupExample(){ 
 

5. Frame f= new Frame("CheckboxGroup Example"); 
 

6. CheckboxGroup cbg = new CheckboxGroup(); 
 

7. Checkbox checkBox1 = new Checkbox("C++", cbg, false); 

8. checkBox1.setBounds(100,100, 50,50); 

9. Checkbox checkBox2 = new Checkbox("Java", cbg, true); 
 

10. checkBox2.setBounds(100,150, 50,50); 
 

11. f.add(checkBox1); 
 

12. f.add(checkBox2); 
 

13. f.setSize(400,400); 
 

14. f.setLayout(null); 
 

15. f.setVisible(true); 
 

16. } 
 

17. public static void main(String args[]) 

https://www.javatpoint.com/java-awt-checkbox
https://www.javatpoint.com/object-class


JAVA PROGRAMMING Page 

 

18. { 
 

19. new CheckboxGroupExample(); 
 

20. } 
 

21. } 
 

Output: 
 

Java AWT Choice 
 

The object of Choice class is used to show popup menu of choices. Choice selected by user is 

shown on the top of a menu. It inherits Component class. 

AWT Choice Class Declaration 
 

1. public class Choice extends Component implements ItemSelectable, Accessible 
 

Java AWT Choice Example 
 

1. import java.awt.*; 
 

2. public class ChoiceExample 

3. { 

4. ChoiceExample(){ 
 

5. Frame f= new Frame(); 
 

6. Choice c=new Choice(); 
 

7. c.setBounds(100,100, 75,75); 
 

8. c.add("Item 1"); 
 

9. c.add("Item 2"); 

https://www.javatpoint.com/java-awt-popupmenu


JAVA PROGRAMMING Page 

 

10. c.add("Item 3"); 
 

11. c.add("Item 4"); 
 

12. c.add("Item 5"); 
 

13. f.add(c); 
 

14. f.setSize(400,400); 
 

15. f.setLayout(null); 
 

16. f.setVisible(true); 
 

17. } 
 

18. public static void main(String args[]) 
 

19. { 
 

20. new ChoiceExample(); 
 

21. } 
 

22. } 
 

Output: 
 

 

 
Java AWT List 

 

The object of List class represents a list of text items. By the help of list, user can choose either 

one item or multiple items. It inherits Component class. 

AWT List class Declaration 



JAVA PROGRAMMING Page 

 

1. public class List extends Component implements ItemSelectable, Accessible 

Java AWT List Example 

1. import java.awt.*; 
 

2. public class ListExample 

3. { 

4. ListExample(){ 
 

5. Frame f= new Frame(); 
 

6. List l1=new List(5); 
 

7. l1.setBounds(100,100, 75,75); 
 

8. l1.add("Item 1"); 
 

9. l1.add("Item 2"); 
 

10. l1.add("Item 3"); 
 

11. l1.add("Item 4"); 
 

12. l1.add("Item 5"); 
 

13. f.add(l1); 
 

14. f.setSize(400,400); 
 

15. f.setLayout(null); 
 

16. f.setVisible(true); 
 

17. } 
 

18. public static void main(String args[]) 
 

19. { 
 

20. new ListExample(); 
 

21. } 
 

22. } 
 

Output: 



JAVA PROGRAMMING Page 

 

 
 

Java AWT Dialog 

 

The Dialog control represents a top level window with a border and a title used to take some form 

of input from the user. It inherits the Window class. 

 

Unlike Frame, it doesn't have maximize and minimize buttons. 

 

Frame vs Dialog 
 

Frame and Dialog both inherits Window class. Frame has maximize and minimize buttons but 

Dialog doesn't have. 

 

AWT Dialog class declaration 
 

1. public class Dialog extends Window 

 

Java AWT Dialog Example 
 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class DialogExample { 

4. private static Dialog d; 

5. DialogExample() { 

6. Frame f= new Frame(); 

7. d = new Dialog(f , "Dialog Example", true); 

8. d.setLayout( new FlowLayout() ); 

9. Button b = new Button ("OK"); 

10. b.addActionListener ( new ActionListener() 

11. { 

12. public void actionPerformed( ActionEvent e ) 

13. { 

14. DialogExample.d.setVisible(false); 

15. } 

16. }); 

https://www.javatpoint.com/java-awt-button


JAVA PROGRAMMING Page 

 

17. d.add( new Label ("Click button to continue.")); 

18. d.add(b); 

19. d.setSize(300,300); 

20. d.setVisible(true); 

21. } 

22. public static void main(String args[]) 

23. { 

24. new DialogExample(); 

25. } 

26. } 

 

 

Output: 
 

 

Java AWT MenuItem and Menu 

 

The object of MenuItem class adds a simple labeled menu item on menu. The items used in a menu 

must belong to the MenuItem or any of its subclass. 

 

The object of Menu class is a pull down menu component which is displayed on the menu bar. It 

inherits the MenuItem class. 

 

AWT MenuItem class declaration 
 

1. public class MenuItem extends MenuComponent implements Accessible 

 

AWT Menu class declaration 
 

1. public class Menu extends MenuItem implements MenuContainer, Accessible 

 

Java AWT MenuItem and Menu Example 
 

1. import java.awt.*; 

2. class MenuExample 

3. { 
4. MenuExample(){ 



JAVA PROGRAMMING Page 

 

5. Frame f= new Frame("Menu and MenuItem Example"); 

6. MenuBar mb=new MenuBar(); 

7. Menu menu=new Menu("Menu"); 

8. Menu submenu=new Menu("Sub Menu"); 

9. MenuItem i1=new MenuItem("Item 1"); 

10. MenuItem i2=new MenuItem("Item 2"); 

11. MenuItem i3=new MenuItem("Item 3"); 

12. MenuItem i4=new MenuItem("Item 4"); 

13. MenuItem i5=new MenuItem("Item 5"); 

14. menu.add(i1); 

15. menu.add(i2); 

16. menu.add(i3); 

17. submenu.add(i4); 

18. submenu.add(i5); 

19. menu.add(submenu); 

20. mb.add(menu); 

21. f.setMenuBar(mb); 

22. f.setSize(400,400); 

23. f.setLayout(null); 

24. f.setVisible(true); 

25. } 

26. public static void main(String args[]) 

27. { 

28. new MenuExample(); 

29. } 

30. } 

 

Output: 
 

 

 
Event and Listener (Java Event Handling) 



JAVA PROGRAMMING Page 

 

Changing the state of an object is known as an event. For example, click on button, dragging mouse etc. 

The java.awt.event package provides many event classes and Listener interfaces for event handling. 

 

Java Event classes and Listener interfaces 
 

Event Classes Listener Interfaces 

ActionEvent ActionListener 

MouseEvent MouseListener and MouseMotionListener 

MouseWheelEvent MouseWheelListener 

KeyEvent KeyListener 

ItemEvent ItemListener 

TextEvent TextListener 

AdjustmentEvent AdjustmentListener 

WindowEvent WindowListener 

ComponentEvent ComponentListener 

ContainerEvent ContainerListener 

FocusEvent FocusListener 

 

Steps to perform Event Handling 
 

Following steps are required to perform event handling: 
 

1. Register the component with the Listener 
 

Registration Methods 



JAVA PROGRAMMING Page 

 

For registering the component with the Listener, many classes provide the registration methods. 

For example: 

o Button 

o public void addActionListener(ActionListener a){} 
 

o MenuItem 

o public void addActionListener(ActionListener a){} 
 

o TextField 

o public void addActionListener(ActionListener a){} 
 

o public void addTextListener(TextListener a){} 

o TextArea 
 

o public void addTextListener(TextListener a){} 

o Checkbox 
 

o public void addItemListener(ItemListener a){} 

o Choice 
 

o public void addItemListener(ItemListener a){} 

o List 
 

o public void addActionListener(ActionListener a){} 

o public void addItemListener(ItemListener a){} 
 

Java event handling by implementing ActionListener 
 

1. import java.awt.*; 
 

2. import java.awt.event.*; 
 

3. class AEvent extends Frame implements ActionListener{ 
 

4. TextField tf; 
 

5. AEvent() 

6. { 



JAVA PROGRAMMING Page 

 

7. //create components 
 

8. tf=new TextField(); 
 

9. tf.setBounds(60,50,170,20); 
 

10. Button b=new Button("click me"); 

11. b.setBounds(100,120,80,30); 

12. 
 

13. //register listener 
 

14. b.addActionListener(this);//passing current instance 

15. 

16. //add components and set size, layout and visibility 
 

17. add(b);add(tf); 

18. setSize(300,300); 

19. setLayout(null); 
 

20. setVisible(true); 
 

21. } 
 

22. public void actionPerformed(ActionEvent e){ 
 

23. tf.setText("Welcome"); 
 

24. } 
 

25. public static void main(String args[]){ 
 

26. new AEvent(); 
 

27. } 
 

28. } 
 

public void setBounds(int xaxis, int yaxis, int width, int height); have been used in the above 

example that sets the position of the component it may be button, textfield etc. 



JAVA PROGRAMMING Page 

 

 

 

 

 

 

 

Output: 
 

 
Java MouseListener Interface 

 

The Java MouseListener is notified whenever you change the state of mouse. It is notified against 

MouseEvent. The MouseListener interface is found in java.awt.event package. It has five methods. 

Methods of MouseListener interface 
 

The signature of 5 methods found in MouseListener interface are given below: 
 

1. public abstract void mouseClicked(MouseEvent e); 
 

2. public abstract void mouseEntered(MouseEvent e); 
 

3. public abstract void mouseExited(MouseEvent e); 
 

4. public abstract void mousePressed(MouseEvent e); 
 

5. public abstract void mouseReleased(MouseEvent e); 
 

Java 

MouseList

ener 

Example 1 

1. import java.awt.*; 
 



JAVA PROGRAMMING Page 

 

2. import java.awt.event.*; 
 

3. public class MouseListenerExample extends Frame implements MouseListener{ 
 

4. Label l; 



JAVA PROGRAMMING Page 

 

5. MouseListenerExample(){ 
 

6. addMouseListener(this); 

7. 

8. l=new Label(); 
 

9. l.setBounds(20,50,100,20); 
 

10. add(l); 
 

11. setSize(300,300); 
 

12. setLayout(null); 
 

13. setVisible(true); 
 

14. } 
 

15. public void mouseClicked(MouseEvent e) { 
 

16. l.setText("Mouse Clicked"); 
 

17. } 
 

18. public void mouseEntered(MouseEvent e) { 
 

19. l.setText("Mouse Entered"); 
 

20. } 
 

21. public void mouseExited(MouseEvent e) { 
 

22. l.setText("Mouse Exited"); 
 

23. } 
 

24. public void mousePressed(MouseEvent e) { 
 

25. l.setText("Mouse Pressed"); 
 

26. } 
 

27. public void mouseReleased(MouseEvent e) { 
 

28. l.setText("Mouse Released"); 
 

29. } 



JAVA PROGRAMMING Page 

 

30. public static void main(String[] args) { 
 

31. new MouseListenerExample(); 
 

32. } 
 

33. } 
 

Output: 
 

 

 
Java MouseListener 

Example 2 

1. import java.awt.*; 
 

2. import java.awt.event.*; 
 

3. public class MouseListenerExample2 extends Frame implements MouseListener{ 
 

4. MouseListenerExample2(){ 
 

5. addMouseListener(this); 

6. 

7. setSize(300,300); 
 

8. setLayout(null); 
 

9. setVisible(true); 
 

10. } 
 

11. public void mouseClicked(MouseEvent e) { 



JAVA PROGRAMMING Page 

 

12. Graphics g=getGraphics(); 
 

13. g.setColor(Color.BLUE); 
 

14. g.fillOval(e.getX(),e.getY(),30,30); 
 

15. } 
 

16. public void mouseEntered(MouseEvent e) {} 
 

17. public void mouseExited(MouseEvent e) {} 
 

18. public void mousePressed(MouseEvent e) {} 
 

19. public void mouseReleased(MouseEvent e) {} 

20. 

21. public static void main(String[] args) { 
 

22. new MouseListenerExample2(); 
 

23. } 
 

24. } 
 

Output: 
 

Java KeyListener Interface 
 

The Java KeyListener is notified whenever you change the state of key. It is notified against 

KeyEvent. The KeyListener interface is found in java.awt.event package. It has three methods. 

Methods of KeyListener interface 
 

The signature of 3 methods found in KeyListener interface are given below: 
 

1. public abstract void keyPressed(KeyEvent e); 
 

2. public abstract void keyReleased(KeyEvent e); 



JAVA PROGRAMMING Page 

 

3. public abstract void keyTyped(KeyEvent e); 
 

Java 

KeyListen

er 

Example 1 

1. import java.awt.*; 
 

2. import java.awt.event.*; 
 

3. public class KeyListenerExample extends Frame implements KeyListener{ 
 

4. Label l; 
 

5. TextArea area; 
 

6. KeyListenerExample(){ 

7. 

8. l=new Label(); 
 

9. l.setBounds(20,50,100,20); 
 

10. area=new TextArea(); 
 

11. area.setBounds(20,80,300, 300); 
 

12. area.addKeyListener(this); 

13. 

14. add(l);add(area); 
 

15. setSize(400,400); 
 

16. setLayout(null); 
 

17. setVisible(true); 
 

18. } 
 

19. public void keyPressed(KeyEvent e) { 
 

20. l.setText("Key Pressed"); 
 



JAVA PROGRAMMING Page 

 

21. } 
 

22. public void keyReleased(KeyEvent e) { 



JAVA PROGRAMMING Page 

 

23. l.setText("Key Released"); 
 

24. } 
 

25. public void keyTyped(KeyEvent e) { 
 

26. l.setText("Key Typed"); 
 

27. } 

28. 

29. public static void main(String[] args) { 
 

30. new KeyListenerExample(); 
 

31. } 
 

32. } 
 

Output: 
 

 

 
Java KeyListener 

 

Example 2: Count Words & Characters 
 

1. import java.awt.*; 
 

2. import java.awt.event.*; 
 

3. public class KeyListenerExample extends Frame implements KeyListener{ 
 

4. Label l; 
 

5. TextArea area; 



JAVA PROGRAMMING Page 

 

6. KeyListenerExample(){ 

7. 

8. l=new Label(); 
 

9. l.setBounds(20,50,200,20); 
 

10. area=new TextArea(); 
 

11. area.setBounds(20,80,300, 300); 
 

12. area.addKeyListener(this); 

13. 

14. add(l);add(area); 
 

15. setSize(400,400); 
 

16. setLayout(null); 
 

17. setVisible(true); 
 

18. } 
 

19. public void keyPressed(KeyEvent e) {} 
 

20. public void keyReleased(KeyEvent e) { 
 

21. String text=area.getText(); 
 

22. String words[]=text.split("\\s"); 
 

23. l.setText("Words: "+words.length+" Characters:"+text.length()); 
 

24. } 
 

25. public void keyTyped(KeyEvent e) {} 

26. 

27. public static void main(String[] args) { 
 

28. new KeyListenerExample(); 
 

29. } 
 

30. } 



JAVA PROGRAMMING Page 

 

Output: 
 

Java Adapter Classes 

 

Java adapter classes provide the default implementation of listener interfaces. If you inherit the 

adapter class, you will not be forced to provide the implementation of all the methods of listener 

interfaces. So it saves code. 

 

The adapter classes are found in java.awt.event package. The Adapter classes with their 

corresponding listener interfaces are given below. 

 

java.awt.event Adapter classes 
 

Adapter class Listener interface 

WindowAdapter WindowListener 

KeyAdapter KeyListener 

MouseAdapter MouseListener 

MouseMotionAdapter MouseMotionListener 

FocusAdapter FocusListener 

ComponentAdapter ComponentListener 

ContainerAdapter ContainerListener 

HierarchyBoundsAdapter HierarchyBoundsListener 

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/package
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mousemotionlistener


JAVA PROGRAMMING Page 

 

 

 

java.awt.dnd Adapter classes 

 

Adapter class Listener interface 

DragSourceAdapter DragSourceListener 

DragTargetAdapter DragTargetListener 

 

Java MouseAdapter Example 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class MouseAdapterExample extends MouseAdapter{ 

4. Frame f; 

5. MouseAdapterExample(){ 

6. f=new Frame("Mouse Adapter"); 

7. f.addMouseListener(this); 

8. 
9. f.setSize(300,300); 

10. f.setLayout(null); 

11. f.setVisible(true); 

12. } 

13. public void mouseClicked(MouseEvent e) { 

14. Graphics g=f.getGraphics(); 

15. g.setColor(Color.BLUE); 

16. g.fillOval(e.getX(),e.getY(),30,30); 

17. } 

18. 
19. public static void main(String[] args) { 

20. new MouseAdapterExample(); 

21. } 

22. } 

 

Output: 



JAVA PROGRAMMING Page 

 

 
 

 

 

Java MouseMotionAdapter Example 

 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class MouseMotionAdapterExample extends MouseMotionAdapter{ 

4. Frame f; 

5. MouseMotionAdapterExample(){ 

6. f=new Frame("Mouse Motion Adapter"); 

7. f.addMouseMotionListener(this); 

8. 
9. f.setSize(300,300); 

10. f.setLayout(null); 

11. f.setVisible(true); 

12. } 

13. public void mouseDragged(MouseEvent e) { 

14. Graphics g=f.getGraphics(); 

15. g.setColor(Color.ORANGE); 

16. g.fillOval(e.getX(),e.getY(),20,20); 

17. } 

18. public static void main(String[] args) { 

19. new MouseMotionAdapterExample(); 

20. } 

21. } 

 

Output: 



JAVA PROGRAMMING Page 

 

 
 

Java KeyAdapter Example 

 

1. import java.awt.*; 

2. import java.awt.event.*; 

3. public class KeyAdapterExample extends KeyAdapter{ 

4. Label l; 

5. TextArea area; 

6. Frame f; 

7. KeyAdapterExample(){ 

8. f=new Frame("Key Adapter"); 

9. l=new Label(); 

10. l.setBounds(20,50,200,20); 

11. area=new TextArea(); 

12. area.setBounds(20,80,300, 300); 

13. area.addKeyListener(this); 

14. 

15. f.add(l);f.add(area); 

16. f.setSize(400,400); 
17. f.setLayout(null); 

18. f.setVisible(true); 

19. } 

20. public void keyReleased(KeyEvent e) { 

21. String text=area.getText(); 

22. String words[]=text.split("\\s"); 

23. l.setText("Words: "+words.length+" Characters:"+text.length()); 

24. } 

25. 

26. public static void main(String[] args) { 

27. new KeyAdapterExample(); 

28. } 

29. } 

 

Output: 



JAVA PROGRAMMING Page 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



JAVA PROGRAMMING Page 

 

UNIT-V 

 
Java Layout Managers 

 

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is 

an interface that is implemented by all the classes of layout managers. There are following classes 

that represents the layout managers: 

 
1. java.awt.BorderLayout 

2. java.awt.FlowLayout 

3. java.awt.GridLayout 

4. java.awt.CardLayout 

5. java.awt.GridBagLayout 

6. javax.swing.BoxLayout 

7. javax.swing.GroupLayout 

8. javax.swing.ScrollPaneLayout 

9. javax.swing.SpringLayout etc. 

 
Java BorderLayout 

 

The BorderLayout is used to arrange the components in five regions: north, south, east, west and 

center. Each region (area) may contain one component only. It is the default layout of frame or 

window. The BorderLayout provides five constants for each region: 

 

1. public static final int NORTH 
2. public static final int SOUTH 

3. public static final int EAST 

4. public static final int WEST 

5. public static final int CENTER 



JAVA PROGRAMMING Page 

 

Constructors of BorderLayout class: 

 

o BorderLayout(): creates a border layout but with no gaps between the components. 

o JBorderLayout(int hgap, int vgap): creates a border layout with the given horizontal and 
vertical gaps between the components. 

 
 

 

Example of BorderLayout class: 
 
 

 

 

 
 

1. import java.awt.*; 

2. import javax.swing.*; 

3. 

4. public class Border { 

5. JFrame f; 

6. Border(){ 

7. f=new JFrame(); 

8. 

9. JButton b1=new JButton("NORTH");; 

10. JButton b2=new JButton("SOUTH");; 

11. JButton b3=new JButton("EAST");; 

12. JButton b4=new JButton("WEST");; 

13. JButton b5=new JButton("CENTER");; 

14. 
15. f.add(b1,BorderLayout.NORTH); 

16. f.add(b2,BorderLayout.SOUTH); 

17. f.add(b3,BorderLayout.EAST); 

18. f.add(b4,BorderLayout.WEST); 

19. f.add(b5,BorderLayout.CENTER); 



JAVA PROGRAMMING Page 

 

20.  
21. f.setSize(300,300); 

22. f.setVisible(true); 

23. } 

24. public static void main(String[] args) { 

25. new Border(); 

26. } 

27. } 

 

 
Java GridLayout 

 

The GridLayout is used to arrange the components in rectangular grid. One component is displayed 

in each rectangle. 

 
Constructors of GridLayout class 

 

1. GridLayout(): creates a grid layout with one column per component in a row. 

2. GridLayout(int rows, int columns): creates a grid layout with the given rows and 

columns but no gaps between the components. 

3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with the 

given rows and columns alongwith given horizontal and vertical gaps. 

 
Example of GridLayout class 

 

1. import java.awt.*; 

2. import javax.swing.*; 

3. 
4. public class MyGridLayout{ 

5. JFrame f; 



JAVA PROGRAMMING Page 

 

6. MyGridLayout(){ 

7. f=new JFrame(); 

8. 

9. JButton b1=new JButton("1"); 

10. JButton b2=new JButton("2"); 

11. JButton b3=new JButton("3"); 

12. JButton b4=new JButton("4"); 

13. JButton b5=new JButton("5"); 

14. JButton b6=new JButton("6"); 

15. JButton b7=new JButton("7"); 

16. JButton b8=new JButton("8"); 

17. JButton b9=new JButton("9"); 

18. 

19. f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5); 

20. f.add(b6);f.add(b7);f.add(b8);f.add(b9); 

21. 
22. f.setLayout(new GridLayout(3,3)); 

23. //setting grid layout of 3 rows and 3 columns 

24. 

25. f.setSize(300,300); 

26. f.setVisible(true); 

27. } 

28. public static void main(String[] args) { 

29. new MyGridLayout(); 

30. } 

31. } 

 

 
Java FlowLayout 

 

The FlowLayout is used to arrange the components in a line, one after another (in a flow). It is the 

default layout of applet or panel. 

 
Fields of FlowLayout class 

 

1. public static final int LEFT 
2. public static final int RIGHT 

3. public static final int CENTER 

4. public static final int LEADING 

5. public static final int TRAILING 

 
Constructors of FlowLayout class 

 

1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit 

horizontal and vertical gap. 



JAVA PROGRAMMING Page 

 

2. FlowLayout(int align): creates a flow layout with the given alignment and a default 5 unit 

horizontal and vertical gap. 

3. FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given alignment 

and the given horizontal and vertical gap. 

 

 
 

Example of FlowLayout class 
 

1. import java.awt.*; 

2. import javax.swing.*; 

3. 
4. public class MyFlowLayout{ 

5. JFrame f; 

6. MyFlowLayout(){ 

7. f=new JFrame(); 

8. 
9. JButton b1=new JButton("1"); 

10. JButton b2=new JButton("2"); 

11. JButton b3=new JButton("3"); 

12. JButton b4=new JButton("4"); 

13. JButton b5=new JButton("5"); 

14. 

15. f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5); 

16. 

17. f.setLayout(new FlowLayout(FlowLayout.RIGHT)); 

18. //setting flow layout of right alignment 

19. 
20. f.setSize(300,300); 

21. f.setVisible(true); 

22. } 

23. public static void main(String[] args) { 



JAVA PROGRAMMING Page 

 

24. new MyFlowLayout(); 

25. } 

26. } 

 

 
Java CardLayout 

 

The CardLayout class manages the components in such a manner that only one component is 

visible at a time. It treats each component as a card that is why it is known as CardLayout. 

 
Constructors of CardLayout class 

 

1. CardLayout(): creates a card layout with zero horizontal and vertical gap. 

2. CardLayout(int hgap, int vgap): creates a card layout with the given horizontal and 

vertical gap. 

 
Commonly used methods of CardLayout class 

 

o public void next(Container parent): is used to flip to the next card of the given container. 

o public void previous(Container parent): is used to flip to the previous card of the given 
container. 

o public void first(Container parent): is used to flip to the first card of the given container. 

o public void last(Container parent): is used to flip to the last card of the given container. 

o public void show(Container parent, String name): is used to flip to the specified card 

with the given name. 
 
 

 

Example of CardLayout class 

 

 
 

1. import java.awt.*; 

2. import java.awt.event.*; 



JAVA PROGRAMMING Page 

 

3. 

4. import javax.swing.*; 

5. 

6. public class CardLayoutExample extends JFrame implements ActionListener{ 

7. CardLayout card; 

8. JButton b1,b2,b3; 

9. Container c; 

10. CardLayoutExample(){ 

11. 
12. c=getContentPane(); 

13. card=new CardLayout(40,30); 

14. //create CardLayout object with 40 hor space and 30 ver space 

15. c.setLayout(card); 

16. 16. 

17. b1=new JButton("Apple"); 

18. b2=new JButton("Boy"); 

19. b3=new JButton("Cat"); 

20. b1.addActionListener(this); 

21. b2.addActionListener(this); 

22. b3.addActionListener(this); 

23. 
24. c.add("a",b1);c.add("b",b2);c.add("c",b3); 

25. 

26. } 

27. public void actionPerformed(ActionEvent e) { 

28. card.next(c); 

29. } 

30. 
31. public static void main(String[] args) { 

32. CardLayoutExample cl=new CardLayoutExample(); 

33. cl.setSize(400,400); 
34. cl.setVisible(true); 

35. cl.setDefaultCloseOperation(EXIT_ON_CLOSE); 

36. } 

37. } 

Java GridBagLayout 

 

The Java GridBagLayout class is used to align components vertically, horizontally or along their 

baseline. 

 

The components may not be of same size. Each GridBagLayout object maintains a dynamic, 

rectangular grid of cells. Each component occupies one or more cells known as its display area. 

Each component associates an instance of GridBagConstraints. With the help of constraints object 

we arrange component's display area on the grid. The GridBagLayout manages each component's 

minimum and preferred sizes in order to determine component's size. 



JAVA PROGRAMMING Page 

 

Fields 

 

Modifier and Type Field Description 

double[] columnWeights It is used to hold the 

overrides to the column 

weights. 

int[] columnWidths It is used to hold the 

overrides to the column 

minimum width. 

protected 

Hashtable<Component,GridBagConstraints> 

comptable It is used to maintains the 

association between a 

component and its gridbag 

constraints. 

protected GridBagConstraints defaultConstraints It is used to hold a gridbag

 constraints 

instance containing the 

default values. 

protected GridBagLayoutInfo layoutInfo It is used to hold the layout 

information for the gridbag. 

protected static int MAXGRIDSIZE No longer in use just for 

backward compatibility 

protected static int MINSIZE It is smallest grid that can be 

laid out by the grid bag 

layout. 

protected static int PREFERREDSIZE It is preferred grid size that 

can be laid out by the grid 

bag layout. 

int[] rowHeights It is used to hold the 

overrides to the row 

minimum heights. 

double[] rowWeights It is used to hold the 

overrides to the row 

weights. 

 
Useful Methods 



JAVA PROGRAMMING Page 

 

Modifier and Type Method Description 

Void addLayoutComponent(Component comp, 

Object constraints) 

It adds specified component to 

the layout, using the specified 

constraints object. 

Void addLayoutComponent(String name, 

Component comp) 

It has no effect, since this 

layout manager does not use a 

per-component string. 

protected void adjustForGravity(GridBagConstraints 

constraints, Rectangle r) 

It adjusts the x, y, width, and 

height fields to the correct 

values depending on the 

constraint geometry and pads. 

protected void AdjustForGravity(GridBagConstraints 

constraints, Rectangle r) 

This method is for backwards 

compatibility only 

protected void arrangeGrid(Container parent) Lays out the grid. 

protected void ArrangeGrid(Container parent) This method is obsolete and 

supplied for backwards 

compatibility 

GridBagConstraints getConstraints(Component comp) It is for getting the constraints 

for the specified component. 

Float getLayoutAlignmentX(Container parent) It returns the alignment 

along the x axis. 

Float getLayoutAlignmentY(Container parent) It returns the alignment 

along the y axis. 

int[][] getLayoutDimensions() It determines column widths 

and row heights for the layout 

grid. 

protected 

GridBagLayoutInfo 

getLayoutInfo(Container parent, int 

sizeflag) 

This method is obsolete and 

supplied for backwards 

compatibility. 

protected 

GridBagLayoutInfo 

GetLayoutInfo(Container parent, int 

sizeflag) 

This method is obsolete and 

supplied for backwards 

compatibility. 



JAVA PROGRAMMING Page 

 

Point getLayoutOrigin() It determines the origin of the 

layout area, in the graphics 

coordinate space of the target 

container. 

double[][] getLayoutWeights() It determines the weights of 

the layout grid's columns and 

rows. 

protected Dimension getMinSize(Container parent, 

GridBagLayoutInfo info) 

It figures out the minimum 

size of the master based on the 

information from 

getLayoutInfo. 

protected Dimension GetMinSize(Container parent, 

GridBagLayoutInfo info) 

This method is obsolete and 

supplied for backwards 

compatibility only 

 

Example 

 

1. import java.awt.Button; 

2. import java.awt.GridBagConstraints; 

3. import java.awt.GridBagLayout; 

4. 
5. import javax.swing.*; 

6. public class GridBagLayoutExample extends JFrame{ 

7. public static void main(String[] args) { 

8. GridBagLayoutExample a = new GridBagLayoutExample(); 9.

 } 
10. public GridBagLayoutExample() { 

11. GridBagLayout grid = new GridBagLayout(); 

12. GridBagConstraints gbc = new GridBagConstraints(); 

13. setLayout(grid); 

14. setTitle("GridBag Layout Example"); 

15. GridBagLayout layout = new GridBagLayout(); 

16. this.setLayout(layout); 

17. gbc.fill = GridBagConstraints.HORIZONTAL; 

18. gbc.gridx = 0; 

19. gbc.gridy = 0; 

20. this.add(new Button("Button One"), gbc); 

21. gbc.gridx = 1; 

22. gbc.gridy = 0; 

23. this.add(new Button("Button two"), gbc); 

24. gbc.fill = GridBagConstraints.HORIZONTAL; 

25. gbc.ipady = 20; 

26. gbc.gridx = 0; 



JAVA PROGRAMMING Page 

 

27. gbc.gridy = 1; 

28. this.add(new Button("Button Three"), gbc); 

29. gbc.gridx = 1; 

30. gbc.gridy = 1; 

31. this.add(new Button("Button Four"), gbc); 

32. gbc.gridx = 0; 

33. gbc.gridy = 2; 

34. gbc.fill = GridBagConstraints.HORIZONTAL; 

35. gbc.gridwidth = 2; 

36. this.add(new Button("Button Five"), gbc); 

37. setSize(300, 300); 
38. setPreferredSize(getSize()); 

39. setVisible(true); 

40. setDefaultCloseOperation(EXIT_ON_CLOSE); 

41. 
42. } 

43. 

44. } 

 

Output: 
 



JAVA PROGRAMMING Page 

 

Applets 

Applet is a special type of program that is embedded in the webpage to generate the 

dynamic content. It runs inside the browser and works at client side. 

 

Advantage of Applet 

 

There are many advantages of applet. They are as follows: 

o It works at client side so less response time. 

o Secured 

o It can be executed by browsers running under many plateforms, including Linux, 

Windows, Mac Os etc. 

 

Drawback of Applet 

 

o Plugin is required at client browser to execute applet. 

 

Lifecycle of Java Applet Hierarchy of Applet 

 

1. Applet is initialized. 

2. Applet is started. 

3. Applet is painted. 

4. Applet is stopped. 

5. Applet is destroyed. 

 
 

Lifecycle methods for Applet: 

 

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 

1 life cycle method for an applet. 

 

 

 



JAVA PROGRAMMING Page 

 

java.applet.Applet class 

 

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle 

methods of applet. 

1. public void init(): is used to initialized the Applet. It is invoked only once. 

2. public void start(): is invoked after the init() method or browser is maximized. It is 

used to start the Applet. 

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop or 

browser is minimized. 

4. public void destroy(): is used to destroy the Applet. It is invoked only once. 

 

java.awt.Component class 

 

The Component class provides 1 life cycle method of applet. 

1. public void paint(Graphics g): is used to paint the Applet. It provides Graphics class 

object that can be used for drawing oval, rectangle, arc etc. 

 

Simple example of Applet by html file: 

 

To execute the applet by html file, create an applet and compile it. After that create an html file 

and place the applet code in html file. Now click the html file. 
1. //First.java 

import java.applet.Applet; 

import java.awt.Graphics; 

public class First extends Applet{ 

public void paint(Graphics g){ 

g.drawString("welcome",150,150); 

} 
} 

 

Simple example of Applet by appletviewer tool: 

 

To execute the applet by appletviewer tool, create an applet that contains applet tag in comment 

and compile it. After that run it by: appletviewer First.java. Now Html file is not required but it is 

for testing purpose only. 

1. //First.java 

import java.applet.Applet; 

import java.awt.Graphics; 

public class First extends Applet{ 

public void paint(Graphics g){ 

g.drawString("welcome to applet",150,150); 
} 

} 

/* 

<applet code="First.class" width="300" height="300"> 

</applet> 

*/ 



JAVA PROGRAMMING Page 

 

To execute the applet by appletviewer tool, write in command prompt: 

 

c:\>javac First.java 

c:\>appletviewer First.java 

 

Difference between Applet and Application programming 
 

Parameter in Applet 

 

We can get any information from the HTML file as a parameter. For this purpose, Applet 

class provides a method named getParameter(). Syntax: 

 

1. public String getParameter(String parameterName) 

 

Example of using parameter in Applet: 

 

1. import java.applet.Applet; 

2. import java.awt.Graphics; 

3. public class UseParam extends Applet 

4. { 

5. public void paint(Graphics g) 



JAVA PROGRAMMING Page 

 

6. { 

7. String str=getParameter("msg"); 

8. g.drawString(str,50, 50); 

9. } } 

myapplet.html 

1. <html> 

2. <body> 

3. <applet code="UseParam.class" width="300" height="300"> 

4. <param name="msg" value="Welcome to applet"> 

5. </applet> 

6. </body> 

7. </html> 

 

 

File name :file.txt Path: file.txt 

Absolute path:C:\Users\akki\IdeaProjects\codewriting\src\file.txt Parent:null 

Exists :true 

Is writeable:true Is readabletrue 

Is a directory:false File Size in bytes 20 

 

Connceting to DB 
 

What is JDBCDriver? 

 

JDBC drivers implement the defined interfaces in the JDBC API, for interacting with your 

database server. For example, using JDBC drivers enable you to open database connections and to 

interact with it by sending SQL or database commands then receiving results with Java. 
 

The Java.sql package that ships with JDK, contains various classes with their behaviours defined 

and their actual implementaions are done in third-party drivers. Third party vendors implements 

the java.sql.Driver interface in their database driver. 

 

JDBC Drivers Types 
 

JDBC driver implementations vary because of the wide variety of operating systems and hardware 

platforms in which Java operates. Sun has divided the implementation types into four categories, 

Types 1, 2, 3, and 4, which is explained below 

 

Type 1: JDBC-ODBCBridge Driver 
 

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client machine. 

Using ODBC, requires configuring on your system a Data Source Name (DSN) that represents the 

target database. 

When Java first came out, this was a useful driver because most databases only supported ODBC 

access but now this type of driver is recommended only for experimental use or when no other 

alternative is available. 



JAVA PROGRAMMING Page 

 

 

The JDBC-ODBC Bridge that comes with JDK 1.2 is a good example of this kind of driver. 

Type 2: JDBC-Native API 
 

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls, which are unique 

to the database. These drivers are typically provided by the database vendors and used in the same 

manner as the JDBC-ODBC Bridge. The vendor-specific driver must be installed on each client 

machine. 
 



JAVA PROGRAMMING Page 
114 

 

If we change the Database, we have to change the native API, as it is specific to a database and they are 

mostly obsolete now, but you may realize some speed increase with a Type 2 driver, because it 

eliminates ODBC's overhead. 

 

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver. 

 

Type 3: JDBC-Net pure Java 
 

In a Type 3 driver, a three-tier approach is used to access databases. The JDBC clients use standard 

network sockets to communicate with a middleware application server. The socket information is then 

translated by the middleware application server into the call format required by the DBMS, and 

forwarded to the database server. 

This kind of driver is extremely flexible, since it requires no code installed on the client and a single 

driver can actually provide access to multiple databases. 

 
 

You can think of the application server as a JDBC "proxy," meaning that it makes calls for the client 

application. As a result, you need some knowledge of the application server's configuration in order to 

effectively use this driver type. 
 
 

Your application server might use a Type 1, 2, or 4 driver to communicate with the database, 

understanding the nuances will prove helpful. 

 

Type 4: 100% Pure Java 
 

In a Type 4 driver, a pure Java-based driver communicates directly with the vendor's database through 

socket connection. This is the highest performance driver available for the database and is usually 

provided by the vendor itself. 

This kind of driver is extremely flexible, you don't need to install special software on the client or 

server. Further, these drivers can be downloaded dynamically. 

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their network 

protocols, database vendors usually supply type 4 drivers. 



JAVA PROGRAMMING Page 
115 

 

 

 

Which Driver should be Used? 
 

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the preferred driver type is 4. 

If your Java application is accessing multiple types of databases at the same time, type 3 is the preferred 

driver. 

Type 2 drivers are useful in situations, where a type 3 or type 4 driver is not available yet for your 

database. 
 

The type 1 driver is not considered a deployment-level driver, and is typically used for development and 

testing purposes only. 
 
 

Example to connect to the mysql database in java 
 

For connecting java application with the mysql database, you need to follow few steps to perform 

database connectivity. In this example we are using MySql as the database. So we need to know 

following information for the mysql database: 

 

1. Driver class: The driver class for the mysql database is com.mysql.jdbc.Driver. 2.Connection 

URL: The connection URL for the mysql database is 

jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is the database, localhost is the 

server name on which mysql is running, we may also use IP address, 3306 is the port number and sonoo 

is the database name. We may use any database, in such case, you need to replace the sonoo with your 

database name. 

3. Username: The default username for the mysql database is root. 

4. Password: Password is given by the user at the time of installing the mysql database. In this 

example, we are going to use root as the password. 

 

Let's first create a table in the mysql database, but before creating table, we need to create database first. 



JAVA PROGRAMMING Page 
116 

 

1. create database sonoo; 

2. use sonoo; 

3. create table emp(id int(10),name varchar(40),age int(3)); Example to Connect Java Application 

with mysql database 

 

In this example, sonoo is the database name, root is the username and password. 

 

import java.sql.*; 

class MysqlCon 

{ 

public static void main(String args[]) 

{ 

Try 
{  

Class.forName("com.mysql.jdbc.Driver"); 

Connection con=DriverManager.getConnection( "jdbc:mysql://localhost:3306/sonoo","root","root"); 

//here sonoo is database name, root is username and password 

Statement stmt=con.createStatement(); 

ResultSet rs=stmt.executeQuery("select * from emp"); 

while(rs.next()) 

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3)); con.close(); 

} 

catch(Exception e){ System.out.println(e); 

} 

} 

} 

The above example will fetch all the records of emp table. 



VIDYA JYOTHI INSTITTUE TECHNOLOGY 

DE PARIMENT OF INF ORMATION TECHNOLOGY 

Batch: 2017-21 

CLASS: Il year l SE M Course:JP Threshold MID-2 Threshold 60% 

MID-1 Threshold 60% PART-8 60% (45M) 

AssignmTheoryMl- Q1 |M1-Q2 Mi-M1-4 M1-Q5 M1-06 Assignm Theorvy M2-01 M2-02 M2-03 M2-04 M2-05 | M2-06 

CO5 

PART-B 

(2M) (4M) (5M) (5M) End Exam 
(20M) 2M) 

CO3 

S.No Reg.No (2M) 
(2M) (2M) Q3 (SM) (5M) (4M) ent2 CO5 CO3 CO4 (75M) 

enti (20M) co4 
CO1 Co2 co3 (5M) (2M) 

CO3 
Co1 Co2 

(SM) 16 
60 

8 
16911A1255 

15 4 
49 
45 

16 17911A1201 
17911A1202 

17911A1203 
17911A1205 

5 
13 

5 16 
17 47 

13 
47 
53 
50 

14 
16 2 

17911A1206 17 2 4 4 

4 18 
19 17911A1208 8 

17911A1209 

17911A1211 
17911A1212 

9 46 
11 

12 48 
14 

10 15 26 
3 10 

17911A1213 11 54 11 
4 17 

17911Alzie 18 47 12 13 4 
1 50 13 17911A1215 

17911A1216 

|17911A1218 

8 4 36 14 
4 5 3 

15 14| 15 

16 17911A1219 3 48 
4 3| 

17911A1220 16 51 17 4 
4 4 5 16 

18 17911A1221 17 10 4 
17911A1222 3 48 19 

10 O 
3 

20 17911A1223 11 49 
2 10 O 

17911A1224 11 47 21 
22 17911A1225 

23 17911A1226 

15 
16 4 

29 
25 
4 

4 5 

10 11 52 
51 

3 5 17 
17911A1227 18 4 5 24 19 2 

20 25 17911A1228 



N
N

N
 

L
O

L
O

O
O

 

u 
u

u
n

u
u

u
n

 u
n

 
n 

u
u

 

E
G

G
3

6
| 

N
N

|N
| 

o
N

E
|
+

|
=

 

O
E

|E
|E

|U
w

N
 

O
E

|N
|O

| 

N
 

w
 

w
u

n
 

w
N

w
w

w
o

 
|u

N
H

 

w
N

N
N

 
w

N
 

O
N

w
N

| 
N

|w
 

|
S

|
|
A

|
D

 

u
n

u
u

| 
w

n
 

N
 

N
N

N
O

|
 

E
||

N
| 

O
E

| 
O

 
|
N

O
 

O
w

N
 

EF
LL

LI
L 



ASSP MENT OF COs FOR THE COURSE 

CO 
CO Attainment CO Attainment (End 

COs value Attain Assignments 
Overall CO Attainment 

Method 
(Internal-Theory) Exam) 

ment 

MI 
3.0 

Q1 CO1 2.0 
MI 

1.0 
Q5 
MI 

3.0 
Q2 Co2 1.5 

MI 
0.0 

Q6 
MI 

3.0 
Q3 
MI 

3.0 

CO3 Q7 3.0 3.0 2.1 3.00 2.89 
M2 

3.0 
Q1 

M2 
3.0 

Q4 
M2 

3.0 
Q2 CO4 3.0 
M2 

3.0 
Q5 

M2 2.0 
Q3 

CO5 1.0 
M2 



Course End Survey Form 



1AVA PROGRAMMING 
Are you able to understand OOP concepts to apply basic Java constructs?46 responses

Slight 
Moderate 3 
Substantial 41 

2. Are you able to analyze different forms of inheritance and handle different kinds of file 

V0?46 responses

Slight 3 

Moderate 3 

Substantial 40 

3. Are you able to evaluate the usage of Exception Handling and Multithreading in complex 

Java programs?46 responses 

Slight 3 

Moderate 1 

Substantial 42 

4. Are you able to contrast different GUI layouts and design GUI applications?46 responses 

Slight 
Moderate 4 

Substantial 41 

5. Are you able to construct a full-ledged Java GUI application, and Applet with database 

connectivity?46 responses 

Slight 3 

Moderate 4 

Substantial 39 


