DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(ESTD - 1999)

Vidya Jyothi Institute of Technology
(An AUTONOMOUS Institution)

(Accredited by NAAC & NBA , Approved By A.I.C.T.E., New Delhi,
Permanently Affiliated to

J.N.T. University, Hyderabad)
(Aziz Nagar, C.B.Post, Hyderabad -500075)

Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA , Approved By A.L.C.T.E., New Delhi, permanently affiliated to JNTUH)
(An AUTONOMOUS Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION: R15

BATCH: 2016-2020

ACADEMIC YEAR: 2019-2020

PROGRAM: B.Tech (COMPUTER SCIENCE AND ENGINEERING)
YEAR/SEM: IV/I1

COURSE NAME: Design Patterns

COURSE CODE: A18543

PRE REQUISITE: Object Oriented Analysis and Design

COURSE COORDINATOR: R.R.S.Ravi kumar

COURSE INSTRUCTORS:

1. K.S.R.K.Sarma
2. R.Yogesh
3. M.Kavya

£-2.-%. Lo Cinvans ﬁ\' i
Course Coordinator HOD-CSE

Vidya Jyothi Institute of Technology
(Accredited by NAAC & NBA , Approved By A.I.C.T.E., New Delhi, permanently affiliated to JINTUH)
(An AUTONOMOUS Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE FILE INDEX

S.NO. DESCRIPTION

L., Syllabus

Text Books & Other References

Time Table

Program Outcomes (PO’s) , Program Specific Outcomes (PSO’s) & PEO’s

Mapping of Course Outcomes (CO’s) With Program Outcomes (PO’s) &
Program Specific Outcomes (PSO’s)

o

wh

Academic Calendar

Course Schedule

Lesson Plan

wiee | o

Assignment Questions
10. | Mid Question Papers | & 11
11. | Unit Wise Questions

12. | Minutes of Course Review Meeting

13. | Lecture Notes

14. | Power Point Presentations

15. | Semester End Question Papers

16. | Extra Topics delivered (if any)

17. | Innovations In Teaching and Learning

18. | Assessment Sheet — CO Wise (Direct Attainment)

19. | Course End Survey Form

Syllabus

Design Patterns

B. Tech. IV Year Il Semester L|T|P|C

Course Qutcomes:

At the end of this course, the student would be able to

1. Understand the Design patterns in software applications.
2. Discuss the Creational Patterns

3. Categorize the Structural Patterns.

4. Investigate Behavior Patterns

5. Construct the good design pattern structures

UNIT --1:

Introduction: What is a Design Pattern ? Design Patterns in Smalltalk MVC, Describing Design
Patterns, The Catalog of Design patterns, Organizing the Catalog, How Design patterns solve Design
problems, How to select a Design Pattern, How to use a Design Pattern.

A Case Study: Designing a Document Editor, Design Problems. Document Structure. Formatting
Embellishing the User Interface, Supporting Multiple Look and Feel Standards, Supporting Multiple
Window systems, User Operations Spelling Checking and Hyphenation. Summary.

UNIT-11

Creational Patterns

Abstract Factory, Builder, Factory Method, Prototype, Singleton. Discussion of Creational Patterns.

UNIT-111
Structural Patterns
Adaptor, Bridge and Composite, Decorator, Facade, Flyweight. proxy

UNIT-1V

Behavior Patterns

Chain of Responsibility, Command, Interpreter, and Iterator. Mediator, Memento. Observer, State,
strategy, Template Method. Visitor, Discussion on Behavioral Patterns.

UNIT-V
What to Expect from Design Patterns
A brief History. The Pattern Community, An Invitation, A Parting Thought,

Text Books:
1. Design Patterns By Erich Gamma. Pearson Education.
Reference Books:

1. Pattern’s in JAVA Vol-1 By Mark Grand, Wiley Dream Tech.
2. Pattern’s in JAVA Vol - Il BY Mark Grand, Wiley Dream Tech.

> Text Books & other

References

Text Books & other References

Text Books

1 Design Patterns By Erich Gamma, Pearson Education.

Suggested / Reference Books

1 Pattern’s in JAVA Vol-I By Mark Grand, Wiley Dream Tech.

2 Pattern’s in JAVA Vol — 11 BY Mark Grand, Wiley Dream Tech.

Other Resources

1 https://sourcemaking.com/design_patterns

2 http://www.oodesign.com

Vidya Jyothi Institute of Technology

Department of Computer Science and Engineering

Year/Sem: IV - II

Sec: CSE-D

W.E.F: 09/12/2019 ROOM NO: N307

DAY 9.00-| 9.55- | 10.50- . 1;45 12.30 - 1.25 - | 2.20 - 3.15-
9.55 10.50 11.45 1.25 2.20 3.15 4.05
12.30
MON | SWSN DP E-COM E-COM SWSN DP
TUE |E-COM| SWSN | E-COM — DP SWSN
WED DP SWSN | E-COM % SEMINAR
THU <Project Work—> ® <Project Work—>
FRI <Project Work=> L <Project Work=>
SAT Department Events Department Events
Subject Name of the Faculty
DP Design Patterns Mr. R.R.S.Ravi Kumar

E-Commerce | E-Commerce Dr.Moulali
SWSN Semantic Web and Social Networks Ms.K.Keerthi
SEMINAR Mr.R.R.S.Ravi Kumar

|

Class Incharge

IV YEAR Coordinator

I/C

Mr. R.R.S. Ravi Kumar
Mr. Y.Prabhu Kumar

Program
Outcomes(PO’s),

Program Specific
Outcomes (PSO’s)

& PEQO’s

Program Outcomes (PO’s):

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization for the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics.
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with
appropriate consideration for public health and safety. and cultural. societal. and
environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

S. Modern tool usage: Create. select, and apply appropriate techniques, resources. and
modern engineering and [T tools, including prediction and modelling to complex
engineering activities, with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety. legal. and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts. and demonstrate the
knowledge of, and need for sustainable development.

8. Ethies: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively: on complex engineering activities with the

engineering community and with the society at large. such as. being able to

comprehend and write effective reports and design documentation. make effective
presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work. as a member

and leader in a team. to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for. and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

11

12

Program Specific Qutcomes (PSO’s):

PSO 1: The ability to design and develop Algorithms to provide optimized solutions for societal
needs

PSO 2: Apply standard approaches and practices in Software Project Development through trending
technologies

Program Educational Objectives (PEO’s)

PEO1: Enhance the employability of the graduate in software industries/Public sector/Research
organizations

PEO2: Acquire analytical and computational abilities to-pursue higher studies for professional
growth

PEO3: Work in multidisciplinary project teams with effective communication skills and leadership
qualities

PEO4: Develop professional ethics among the students and promote entrepreneural abilities

Mapping of
Course Outcomes(CO’s)
With
Program Outcomes(PO’s)
&

Program Specific
Outcomes(PSO’s)

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY
e Department of Computer Science & Engineering

Year &Sem: [VYear II Sem
Course name: Design Patterns

Course Code:A18543
Regulation: R15

COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and
ability to
Co1 Understand the Design patterns in software applications.
co2 Discuss the Creational Patterns.
CcOo3 Categorize the Structural Pattern.
cO4 Investigate Behavioral Patterns.
CcO5 Construct the good design pattern structures. ”‘
CO -PO MAPPING:
PO PO PO
PO1 | PO2 | PO3 |PO4 | PO5|PO6|PO7|PO8 | POO - 11 b
COo 1 3 3 1 2 ik 2 1 1 3 3 2 3
Cco 2 3 2 3 3 2 1 1 2 3 3 2 3
CO 3 3 2 3 3 3 2 1 1 3 3 2 3
Co 4 3 2 3 2 3 2 2 2 2 3 2 3
CO 5 2 2 2 1 2 1 1 2 2 2 2 2
Avg 3 2 3 2 3 2 1 2 3 3 2 3 J
CO - PSO MAPPING:
PSO1 PSO2
co1 3 3
co2 : 2
co3 2 3
CO4 3 J
cos 3 3
KiE 3 3
|
"\
RS Loun P/ A

Signature of Coordinator Signaturé of HOD

Academic Calendar

Academic Calendar

LAz Nagnr, O B.Post, Hydernhad ~SHAYTS)

Vidya Jyothi Institute of Technology (Autonomous)

flevrealind by NdAL & N84 dppvoind B ALC 1 E. New Dheili. Permawently Afviatest do WL Hywerabad

&

HWHLIY YEAR | SEMESTER Commencement of Class Work |
17062019
Fram Te Drgratian
1 Spetl of Instruction 17.06.2019 | 10482019 | § WEEKS
1 Mg Examinstions 13.0&.20m 17082019 | 4 DAYS
11 Spedl af lnslmmjgn) 19.08.2019 | 05102019 | 7 WEEKS
Drassehira Holidays U7 16,2619 19 10201% | 2 WEEKS - o
11 Sgpeelt of Instruction Continwation 21.10.2019 26102019 | | WEEK
1§ Mid Examinations 26102019 | 31102019 | 4 DAYS
Pructical Exarainations OLIL2019 | 03.11.2019 | 1 DAYS
Enid Semester Exisninatons [O411.2009 | 2011.2019 | 2 WEEKS } DAYS
Betterment Exarninations 21.11.2019 2500209 |3 E),-\";’S St
Supplementary Examinstions 23112009 | 0722019 | 2 WEEKS
IWINAY YEAR 1§ SEMFSTER | Commencement of Cliss Work
_ #0.12.2019
I smu':ﬂnsmmim 09122019 | 10002020 | S WEEKS |
Sankranthi Holidays 1012020 | 15002020 | 5 DAYS
Technical/Sports fist 16.01.2020 | IKH1.2020 | 3 DAYS
1 5pell of Instruction Continuation 20002020 | OBO02.2020 | 3 WEEKS
1 Mid Examinstions 10.02.2020 | [5.02.2020 |1 WEEK
11 Spedl of Instruction 17.02.2020 | 11042020 | & WEEKS]
11 Mid Exarsinations 13.042020 | 17042020 |4 DAYS |
E&%&?ﬁﬂﬁﬁnﬁgﬁs IB.04.2020 | 22042020 4 DAYS |
Betterment Examinations 23042020 | 25042020 | 4 DAYS
End Semester Examinations 27042000 | 12052020 | 2 WEEKS 2 DAYS
Supplementary Examinations 11052020 | 30052020 | 2 WEEKS ;bkvé
Commencement of cinsses will be froan 15.06.2020

IHRECT O

Course Schedule

Course Schedule

Distribution of Hours in Unit — Wise

Unit Topic

' Bookl

Total No. of Hours

Introduction: What is a Design Pattern ?
Design Patterns in Smalltalk MVC,
Describing Design Patterns, The Catalog of
Design patterns, Organizing the Catalog,
How Design patterns solve Design problems,
How to select a Design Pattern, How to use a
Design Pattern.

A Case Study: Designing a Document
Editor, Design Problems. Document
Structure, Formatting Embellishing the User
Interface. Supporting Multiple Look and
Feel Standards, Supporting Multiple
Window systems. User Operations Spelling
Checking and Hyphenation, Summary.

T1/1-76

Creational Patterns

Abstract Factory, Builder, Factory Method,
Prototype, Singleton. Discussion of Creational
Patterns.

11

T1/81-135

Structural Patterns
11 Adaptor, Bridge and Composite, Decorator.,
Facade, Flyweight. proxy.

T1/137-219

Behavior Patterns

Chain of Responsibility, Command.
Interpreter, and Iterator. Mediator. Memento.
1A% Observer, State, strategy. Template Method.
Visitor, Discussion on Behavioral Patterns.

T1/221-345

What to Expect from Design Patterns
Vv A brief History, The Pattern Community, An
Invitation, A Parting Thought.

T1/351-359

Total contact classes for syllabus coverage

48

Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA , Approved By A.L.C.T.E., New Delhi, permanently affiliated to JNTUH)
(An AUTONOMOUS Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SUBJECT: Design Patterns
NAME: R R S Ravi kumar

LESSON PLAN

ACADEMIC YEAR: 2019-20
YEAR/SEM/SECTION: IV B.TECH/Il SEM

S.No Topic Name Teaching Learning Process
Unit-1

1. l From Known to Unknown, Chalk &
Introduction. What is a Design |Pattern? Board

Z. Design Patterns in Small Talk MVC. Chalk & Board

3 From Known to Unknown, Chalk &
Describing Design Patterns Board

4. The Catalog of Design Patterns Chalk & Board

5. Organizing the catalog Chalk & Board

6. How Design Patterns Solve design Problems | Chalk & Board

[z How to Select a Design Pattern Chalk & Board

8. How to Use a Design Pattern Chalk & Board

9. From Known to Unknown. Chalk &
A Case Study: Designing a Document Editor | Board

10. Design Problems, — PP

I Document Structure. PPT

12. Formatting Embellishing the User Interface, | PPT

3. Supporting Multiple Look and Feel PPT
Standards,

14. Supporting Multiple Window systems. PPT

I5. User Operations PPT

16. Spelling Checking and Hyphenation, PPT.Online quiz
Summary
Unit-I1
17. Creational Patterns.Introduction PPT
18. Abstract Factory PPT
19. Builder From Known to Unknown, PPT
20. Factory Method Chalk & Board
21, Prototype Chalk & Board,Online quiz
Unit-I11
22. From Known to Unknown, Chalk &
Structural Patterns.Adapter Board
23. Bridge Chalk & Board
24, Composite Chalk & Board
25. Decorator Chalk & Board
26. Facade Chalk & Board
27 Flyweight Chalk & Board
28. Proxy Chalk & Board
29. Structural Patterns.Adapter Chalk & Board
Unit-1V
30. From Known to Unknown .Chalk &
Behavioral Patterns.Chain of Responsibility | Board
31. Command Chalk & Board
32, Interpreter Chalk & Board
33, [terator Chalk & Board
34, Mediator Chalk & Board
35. Memento Chalk & Board
36. Observer Chalk & Board
37. State Chalk & Board

Course Coordinator

38. Strategy PPT
39, Template Method PPT
40. Visitor PPT
' 41. Discussion of Behavioral Patterns PPT
Unit-V
42. What to Expect from Design Patterns.
Chalk & Board
43. A Brief History. Chalk & Board
44. The Pattern Community An Invitation Chalk & Board
45. A Parting Thought PPT
n ¥
LR <& Coun lCnvon

HOD-CSE

Assignment Questions

3
s

Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA , Approved By A.L.C.T.E., New Delhi, permanently affiliated to INTUH)
(An AUTONOMOUS Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
ASSIGNMENT 1

Branch: CSE Year&Sem: [V-]]
SUB: Design Patterns Academic Year: 2019-20
Faculty Name: R.R.S.Ravi Kumar Marks: 25M
S.No | Question Marks | CO | BL PO’s
1 What is a Design Pattern?Discuss about Design Patterns in | 5 | (o 112
Smalltalk MVC. 3 - -
2 List the Catolog of Design Patterns. 5 1 L2 1-12
3 Explain in detail about abstract factory design patterns 5 2 .2 1-12
i Wn?e th'e intent of Smgleton.'D'escrlbe t‘hc? | 5 5 L1.12 1-12
motivation,structure and participants of singleton.
5 Discuss about Bridge design pattern 5 3 L1.L2 1-12

Vidya Jyothi Institute of Technology

RS
(Accredited by NAAC & NBA , Approved By A.LL.C.T.E., New Delhi, permanently affiliated to JNTUH)
(An AUTONOMOUS Institution)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
ASSIGNMENT 2
Branch: CSE Year&Sem: [V-I]
SUB: Design Patterns Academic Year: 2019-20
Faculty Name: R.R.S.Ravi kumar Marks: 25M
S.No | Question Marks | CO | BL | PO’s
| What is a composite design pattern? Discuss about the 5 3 [11>
collaborations and consequences of composite. - B
) LISI' the behavioral design patterns.Compare state and strategy 5 4 112 | 1-12
design patterns
[llustrate about Observer and Factory design Patterns.
3. 5 4 L4 1-12
Discuss about what to expect from design patterns.
4. 5 S | LLLL2 | 1-12
5. | Discuss about Alexander patterns for languages
5 5 | LLLL2 | 1-12

> Mid Question Papers

(Aziz Nagar, C.B.Post, Hyderabad -500075)

Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By A.LC.T.E., New Delhi, Permanently Affiliated to INTU, Hyderabad)

IV Year B.Tech II Semester I Mid Examination

Branch:CSE Duration: 90Min
Subject: Design Patterns Marks: 20
Date:17.02.2020 Session: FN
Course Outcomes:
{ Understand the Design Patterns in Software Applications
2 Discuss the Creational Patterns
3.Categorize the Structural Patterns
4 Investigate Behavioral Patterns
5.Construct the good design pattern structures
Bloom's Level:
Remember I
Understand I
Apply I
Analyze v
B uate Vv
Create VI
PART-A (3Qx2M =6Marks) Outcomes | o0 | 0
ANSWER ALL THE QUESTIONS coO PO
1.i) [What is a design pattern? 1l 1wz)
[OR]
ii) |List the various behavioral patterns. 1 | 1012] 1 2
2.i) |[What is the intent of abstract factory? 21 11281 2
[OR]
ii) |List the participants of prototype. 2. 1lipl2 1 2
3.i) |Write the collaborations of composite. 3.9 1to12°) 2 2
[OR]
ii) |What is the intent of bridge? 3T1wi2 | 2 2
P PART-B (5+5+4= 14 Marks) Outcomes | o | \o oo
"ANSWER ALL THE QUESTIONS co| PO
4.i.a)|Write the general template used for describing the design patterns. 1 |1t012] 2 3
b)|List and Explain various ways how to organizing the Catalog. 1]l 1t012] 3 2
[OR]
ii.a) |Explain the Spell checking and Hyphenation in Lexi. 1T 1te1213 3
b) |Discuss the various patterns in design of Lexi. 1t 11t0121 2 2
5.1i.a)| Write the Intent, Motivation and structure of the Factory method Pattern. 9l Ti12) 2 3
b)|Write the Consequences, sample code and implementation of the Builder. 2 11t012] 2 .
[OR]
ii.a) |Discuss the structure, Participants and Collaborations of Singleton. 2V ito1249 2 3
b) |What are the consequences and applicability of the abstract factory Pattern? 51t ianin :
0
6.i) |What are the Intent, motivation and structure of the Composite Pattern? T 1 11612 I t 4
[OR]
ii) |Discuss about the Adapter Pattern. 311103214 4

Vm(A)

Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By A.1.C TE., New Delhi, Permanently Affiliated to INTU, Hyderabad)
(Aziz Nagar, C.B Post, Hyderabad -500075)

1V Year B.Tech II Semester 2™ Mid Exam

Branch: Computer Science and Engineering Duration: 90Min
Sub:Design Patterns Marks: 20
Date: Session:

Course Qutcomes:
COl.Understand the Design Patterns in Software Applications
CO2.Discuss the Creational Patterns
CO3.Categorize the Structural Patterns
CO4.Investigate Behavior Patterns
CO5.Construct the good design pattern structures
Bloom Levels:

Remember I
Understand Il
Apply 11
Analyze 1A%
Evaluate \%
Create VI
PART-A (3Qx2M =6 Marks) Conrse Bloom
Outcomes Levels
ANSWER ALL THE QUESTIONS Cco PO

1 |What is Flyweight pattern.
at is Flyweight pattern CO3 [P1toP12| LI

2 What are the Known uses of Mediator Pattern.)
CO4 (P1toPI2 L2

3 Write A Parting Thought.

CO5 [P1toP12| L1

Course

PART-B (5+5+4= 14 Marks) Bloom
Outcomes Levels
ANSWER ALL THE QUESTIONS CO PO
4.i) | Write the Intent Motivation of Fagade Patterns and List the Uses. cos |PltopP12| 12
[OR]
ii) Draw the Structure of the Decorator and Write the Implementation of it. CO3 |P1toP12| L4
5.i) |What are the Consequences and Sample code of the Template method Pattern. Cco4 |PltoPl2| Ls
[OR]
ii.) Discuss the Intent, Applicability and Implementation of State Pattern. co4 [PltoP12] 14
6.i) |Explain what to expect from Design Patterns cos |PltoP12| 12
[OR]
ii) Write about Alexander's Pattern Languages.
CO5 |PItoP12| L2
VJ[T(A)

Controller of Examinations DIRECTOF

Unit wise Questions

IV-CSE 1l sem

Design Patterns unit wise questions

Unit-I

Short Answer Questions.

List the GOF in design patterns. ‘
What is Design Pattern? |
List down the four essential elements of patterns.
Describe the MV C architecture
Define encapsulation
Write notes on Operation’s signature in an object.
Write notes on interfaces in object oriented systems.
Describe dynamic binding.
. Write notes on abstract classes.
10. Define concrete class.
) 11. Define White-box reuse.
12. Define black box reuse.
13. List disadvantages of class inheritance.
14. Describe delegation
15. What is Acquaintance relationship of objects? ;
16. Describe the use Framework.
17. Outline the different Toolkits.
18. Discuss Aggregation.
19. What is object granularity?
20. Briefly describe how to Use a Design Pattern

o R O

Long Answer Questions.

1. Hlustrate about Describing Design Patterns. |
2. Compose and describe the MVC architecture in Smalltalk.
3. Listand Identify various ways how to organizing the design patterns.
i 4. Write the intents of various design patterns in the catalog of design Patterns.
5. Explain how to describe design Patterns.
6. Examine how Design Patterns Solve Design Problems.
7. Identify the process of how to Select a Design Pattern and how to Use a Design Pattern.
UNIT-II

Short Answer Questions.

What is creational design pattern?
Define singleton :
List the Examples of creational design patterns ‘
Write about factory method

List the uses of factory method.

DR W

6. Write the main disadvantage of factory method.

7. Define Prototype method

8. Write the intent of Builder.

9. Identify the use Builder.

10. Identify the use of singleton.

11. List the benefits of singleton

12. List the benefits of Builder.

13. Write the disadvantages of Prototype method.

14. List the Related patterns of Builder.

15. Define the intent Abstract factory.

16. What is Abstract factory?

17. Write the Intent, structure of Singleton Pattern. .
18. Describe Applicability and Implementation of Singleton Pattern.
19. Write the Consequences of the Builder Pattern

20. Write the Sample code of the Builder Pattern

Long Answer Questions.

Compare and contrast two techniques for embellishing user interface.

Discuss about creational Patterns

Write the Intent. Motivation and structure of the Abstract Factory Pattern.

Compose the Consequences and Sample code of the Builder Pattern.

Write the structure. sample code and implementation of the Factory Method.
[llustrate the Intent. Applicability. Motivation of Prototype design pattern.

Discuss the Intent. structure. Applicability and Implementation of Singleton Pattern.

OV LA s G B

UNIT-III
Short Answer Questions.

Write notes on Structural Pattern.
Identify the use of Adapter Pattern.
Write the use of Bridge Pattern.
Define composite Pattern.
Define decorator pattern.
Write notes on applicability of decorator pattern.
Identify when to use Facade Pattern.
What is Flyweight pattern?
How Decorator Pattern considered as structural pattern,
. What is the other name of Proxy?
. Name the related Patterns of Proxy.
. List the related Patterns of Flyweight
. List the related Patterns of Adapter
. Find the related Patterns of Composite
. List the Known uses of Adapter
. Write the Known uses of Bridge pattern
. Write about Intent and Motivation of the Flyweight pattern.
. How to Implement the Flyweight pattern.
. Restate the consequences. Collaborations of Proxy pattern

O 0N —

kol
.—AO

.
)

t

..._._._._.._.
O 0o~ O\ W

20.

Write the sample code of Proxy pattern

Long Answer Questions

N W

Write the Intent, Motivation and structure of the Adapter Pattern.

[llustrate are the Consequences and Sample code of the Bridge Pattern.

Discuss about the structure. sample code and implementation of the Composite.
Explain the Intent, Applicability, Motivation of Decoratotor design pattern.

Discuss the Intent. structure, Applicability and Implementation of Singleton Pattern.

Write the Motivation and Sample code of Facade Patterns and List the Uses.
Design the Structure of the Decorator and Write the Implementation of it.

UNIT-1V

Short answer questions

9N L~

9.

10.
11.
12.
13.
14.
I3
16.
Iy
18.
19.
20.

Define the Behavioral Patterns.

List the Different Behavioral Patterns.

Write the intent of Chain of Responsibility.
Identify the Known uses of Chain of responsibility.
Define the intent of command Pattern.

Describe the Known uses of command Pattern.
Write the intent of Iterator pattern.

Describe the Application of Strategy Pattern.
Define the intent of Visitor.

List down the uses mediator pattern.

Define the intent of Memento pattern.

Define the intent of Observer.

Write down the Known uses of Mediator Pattern.
List the Known uses of Memento Pattern.

Write the Known uses of Observer Pattern.
Identify the Collaborations of Command Pattern.
Differentiate Mediator and Memento.

State the Applicability of Iterator Pattern

Write the Collaborations of State Pattern

List the Advantages of State Pattern

Long Answer Questions.

N AW RN e

Describe the Implementation and sample code of Chain of responsibility.
Discuss the Intent, Applicability and Implementation of Command Pattern.
Explain the Motivation .Structure and Consequences of Interpreter
Compare and Contrast between State and strategy.

State the Consequences and Write the Sample code of the Template method Pattern.

Construct the sample code and implementation of the Visitor
Discuss the Intent. Applicability. Motivation Strategy design pattern.

UNIT-V

Short answer questions

List the Phases in object oriented software.
Define Refactoring.

Describe Prototyping.

What is expansionary?

Write about consolidating.

What can you do if you are interested in Patterns?
Write A Parting Thought.

Describe Reuse.

. Write about Documentation.

10. Write the four ways of in which our works are different.
Long Answer Questions.

1. Discuss what to expect from Design Patterns?

R BV R

2. Discuss the Alexander’s Patterns and Patterns in software in the Pattern Community.
3. Explain the Patterns in software.

4. Tllustrate the Brief History of Design Patterns.

5. Mlustrate concept of The Pattern Community.

Course Review Meeting

Meeting 2
Date: 18/03/2020

Details of Meeting No — 2

Date of Meeting 18/03/2020

fm—y

Member’s Present | 1. Mr. R.R.S.Ravi Kumar

[\

. Ms. M.Kavya

(9'S]

. Mr. R.Yogesh
4. Mr.K.S.R.K.Sarma

Details e Preparation of Unit wise questions and give assignment to students

* Status of Syllabus coverage of Mid II and instructions to complete
the syllabus

r

Signatures

(S
k %

R”Q‘ S. M]M

Course Coordinator

Meeting 1

Date: 02/02/2020

Details of Meeting No — 1

Date of Meeting

02/02/2020

Member’s Present

1. Mr. R.R.S.Ravi Kumar
2. Ms. M.Kavya

3. Mr. R.Yogesh

4. Mr.K.S.R.K.Sarma

Details

Points discussed in the meeting:

* Preparation of Unit wise questions and give assignment to students

e Discussion of Teaching Learning Practices

* Status of Syllabus coverage of Mid I and instructions to complete the

syllabus
Signatures . %
Moy
3.y
4, rrokseine—
L
Ze.s Lo onvow

Course Coordinator

Lecture Notes

CONTENTS
UNIT-I
Introduction:

1. What is a design pattern?

2. Design patterns in Smalltalk MVC

3. Describing Design Patterns

4. The Catalog of Design Patterns

5. Organizing the Catalog

6. How Design Patterns Solve Design Problems
7. How to Select a Design Pattern

8. How to use a Design Pattern.

UNIT-II
A Case Study:

Designing a Document Editor Design Problems,
Document Structure
Formatting
Embellishing the User Interface
Supporting Multiple Look-and Feel Standards
Supporting Multiple Window Systems,
User Operations Spelling Checking and Hyphenation,
Summary.
Creational Patterns: Abstract Factory

. Builder

. Factory Method

. Prototype

13. Singleton

14. Discussion of Creational Patterns

L ke e

—
—_— O

3o

UNIT-III
Structural Pattern Part-I :

1. Adapter
2. Bridge
3. Composite

Structural Pattern Part-I1 :

1. Decorator
2. Fagade
3. Flyweight
4. Proxy

UNIT-IV
Behavioural Patterns Part-I :

1. Chain of Responsibility
2. Command

3. Interpreter

4. Tterator

Behavioural Patterns Part-II :

1. Mediator
2. Memento
3. Observer

UNIT-V
Behavioural Patterns Part-11 (cont’d):

State

Strategy

Template Method

Visitor

Discussion of Behavioral Patterns

2o e 1O e

What to Expect from Design Patterns

A Brief History
The Pattern Community An Invitation
A Parting Thought

O e N

UNIT-1
Introduction

What is a Design Pattern?

* Each pattern Describes a problem which occurs over and over again in our
environment ,and then describes the core of the problem

* Novelists, playwrights and other writers rarely invent new stories.
* Often ideas are reused, such as the “Tragic Hero” from Hamlet or Macbeth.
* Designers reuse solutions also, preferably the “good” ones
— Experience is what makes one an ‘expert’
* Problems are addressed without rediscovering solutions from scratch.
“My wheel is rounder.

Design Patterns are the best solutions for the re-occurring problems in the application
programming environment.

* Nearly a universal standard.
* Responsible for design pattern analysis in other areas, including GUISs.
* Mainly used in Object Oriented programming.
Design Pattern Elements
1. Pattern Name
Handle used to describe the design problem.
Increases vocabulary.
Eases design discussions.
Evaluation without implementation details.
2. Problem
Describes when to apply a pattern.
May include conditions for the pattern to be applicable.
Symptoms of an inflexible design or limitation.
3. Solution
Describes elements for the design.
Includes relationships, responsibilities, and collaborations.
Does not describe concrete designs or implementations. A
pattern is more of a template.

4. Consequences

Results and Trade Offs.

Critical for design pattern evaluation.
Often space and time trade offs.
Language strengths and limitations.

(Broken into benefits and drawbacks for this discussion).

Design patterns can be subjective.

One person’s pattern may be another person’s primitive building block.
The focus of the selected design patterns are:

Object and class communication.

Customized to solve a general design problem.

Solution is context specific.

Design patterns in Smalltalk MV C:
The Model/View/Controller triad of classes
is used to build user interfaces in Smalltalk-80
MVC consists of three kinds of objects.
M->>MODEL is the Application object.
V->>View is the screen presentation.
C->>Controller is the way the user interface reacts to user input
MVC decouples to increase flexibility and reuse.
MVC decouples views and models by establishing a subscribe/notify protocol between them.
A view must ensure that its appearance must reflects the state of the model.
Whenever the model’s data changes, the model notifies views that depends on it.
You can also create new views for a model without
Rewriting it.

The below diagram shows a model and three views.

The model contains some data values, and the views defining a spreadsheet,
histogram, and pie chart display these data in various ways.

The model communicates with it’s values change, and the views communicate with the
model to access these values.

Feature of MVC is that views can be nested.

Easy to maintain and enhancement.

Relative Percentages

ABCD
i X 15 35 3515
Y 10 40 3020 |
Z 10 40 3020
.-\::l(:)”] .
™ B=40%
C=30% Application data
D=20%

Describing Design Patterns:

Graphical notations ,while important and useful, aren’t sufficient.

They capture the end product of the design process as relationships between
classes and objects.

By using a consistent format we describe the design pattern .
Each pattern is divided into sections according to the following template.

| Pattern Name and Classification:

m it conveys the essence of the pattern succinctly good name is vital, because it will
become part of design vocabulary.

Intent: What does the design pattern do?

What is it’s rational and intend?

What particular design issue or problem does it address?

Also Known As: Other well-known names for the pattern, if any.

Motivation:

A scenario that illustrates a design problem and how the class and object structures in the
pattern solve the problem.

}'l}f scenario will help understand the more abstract description of the pattern that
ollows.

Applicability:
* Applicability: What are the situations in which the design patterns can be applied?
* What are example of the poor designs that the pattern can address?

* How can recognize situations?

* Structure: Graphical representation of the classes in the pattern using a notation based
on the object Modeling Technique(OMT).

* Participants: The classes and/or objects participating in the design pattern and
their responsibilities.

Structure:

Graphical representation of the classes in the pattern using a notation based on the object
Modeling Technique(OMT).

Participants:
The classes and/or objects participating in the design pattern and their responsibilities.

Collaborations:

How the participants collaborate to carry out their
responsibilities. Consequences:

How does the pattern support its objectives?

What are the trade-offs and result of using the pattern ?

What aspect of the system structure does it let vary
independently? Implementation:

What pitfalls,hints,or techniques should be aware of when implementing the pattern ?

Are there language-specific issues?

Sample Code:

Code fragments that illustrate how might implement the pattern in c++ or
Smalltalk. Known Uses:

Examples of the pattern found in real systems.

Related Patterns:

What design patterns are closely related to this one? What are the imp

differences? With Which other patterns should this one be used?

The Catalog of Design Pattern:

Abstract Factory: Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.

Adaptor: Convert the interface of a class into another interface clients expect.
Bridge: Decouple an abstraction from its implementation so that two can vary independently.

e Builder:

* Separates the construction of the complex object from its representation so that
the same constriction process can create different representations.

+ Chain of Responsibility: Avoid coupling the sender of a request to it’s receiver by
giving more than one object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an objects handles it.

e Command:

* Encapsulate a request as an object ,thereby letting parameterize clients with
different request, queue or log requests, and support undoable operations.

« Composite:

Compose objects into three objects to represent part-whole hierarchies. Composite lets clients
treat individual objects and compositions of objects uniformly.

¢ Decorator:

* Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to sub classing for extending functionality.

 Fagade: Provide a unified interface to a set of interfaces in a subsystem's Facade
defines a higher-level interface that makes the subsystem easier to use.

* Factory Method:

* Defines an interface for creating an object ,but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses.

* Flyweight:
* Use sharing to support large numbers of fine-grained objects efficiently.
* Interpreter:

» Given a language, defining a representation of its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

* Memento: Without violating encapsulation, capture and externalize an object’s
internal state so that object can be restored to this state later.

Observer:Define a one-to-many dependency between objects so that when one
object changes state, all it’s dependents are notified and updated automatically.

Prototype:

Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype.

Proxy: Provide a surrogate or placeholder for another object to control access to it.
Singleton: Ensure a class has only one instance, and provide a point of access to it.
State:

Allow an object to alter its behavior when its internal state changes. the object will
appear to change its class.

Strategy:

Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

Template Method:

Define the Skelton of an operation, deferring some steps to subclasses. Template
method subclasses redefine certain steps of an algorithm without changing the
algorithms structure.

Visitor:

Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the
elements on which it operates.

Purpose: what a pattern does
Creational: concern the process of object creation
Structural: the composition of classes or objects

Behavioral: characterize the ways in which classes or objects interact and distribute
responsibility

Scope: whether the pattern applies primarily to classes or to ob

How Design Patterns Solve Design Problems:
» Finding Appropriate Objects
— Decomposing a system into objects is the hard par.t

— O0-designs often end up with classes with no counterparts in real world (low-
level classes like arrays).

Strict modeling of the real world leads to a system that reflects today’s realities but not
necessarily tomorrows.

— Design patterns identify less-obvious abstractions.
* Determining Object Granularity
— Objects can vary tremendously in size and number
— Facade pattern describes how to represent subsystems as objects

— Flyweight pattern describes how to support huge numbers of objects

* Mapping
[iemets]

saving slate

of iteration

Bridge

(o]

13- . t(.”-llll.l;l.im

Decorator \
\ e
\ e
changangtskin | defining Chain of
versusguts \grammar Responsibility

PG e
Q,J;, ol BV
B, | Interpreter oGl
é% complex
m dependenc Observer
management

often uses

sharing
strategies

defining
glgorithm’s

Template Method

Factory Method

singie Abstiact Factory 0

* Bl
Singleton 1 single !Facmte
instance

Specifying Object Interfaces:

» Interface:
— Set of all signatures defined by an object’s operations.

— Any request matching a signature in the objects interface may be sent to the
object.

— Interfaces may contain other interfaces as subsets.
* Type:
— Denotes a particular interfaces.
— An object may have many types.
— Widely different object may share a type.
— Objects of the same type need only share parts of their interfaces.
— A subtype contains the interface of its super type.

* Dynamic binding, polymorphism.

* Anobject’s implementation is defined by its class

* The class specifies the object’s internal data and defines the operations the object
can perform

* Objects is created by instantiating a class
— an object = an instance of a class
* Class inheritance

— parent class and subclass

* Abstract class versus concrete class
— abstract operations.
* QOverride an operation.
* C(lass versus type:
— An object’s class defines how the object is implemented.

— An object’s fype only refers to its interface.

— An object can have many types, and objects of different classes can have the
same type.

» (Class versus Interface Inheritance

— class inheritance defines an object’s implementation in terms of another
object’s implementation (code and representation sharing).

— interface inheritance (or subtyping) describes when an object can be used in
place of another.

* Many of the design patterns depend on this distinction.
Programming to an Interface, not an Implementation
* Benefits
— clients remain unaware of the specific types of objects they use.
— clients remain unaware of the classes that implement these objects.

» Manipulate objects solely in terms of interfaces
defined by abstract classes!

* Benefits:
— Clients remain unaware of the specific types of objects they use.

— Clients remain unaware of the classes that implement the objects.
Clients only know about abstract class(es) defining the interfaces

— Do not declare variables to be instances of particular concrete classes

— Use creational patterns to create actual objects.

Favor object composition over class inheritance

* White-box reuse:

Reuse by subclassing (class inheritance)

Internals of parent classes are often visible to subclasses

works statically, compile-time approach

Inheritance breaks encapsulation
* Black-box reuse:
— Reuse by object composition
— Requires objects to have well-defined interfaces

— No internal details of objects are visible

Inheritance versus Composition
* Two most common techniques for reuse
— class inheritance
» white-box reuse
— object composition
» black-box reuse
* Class inheritance
— advantages
+ static, straightforward to use.
» make the implementations being reuse more easily.
* Class inheritance (cont.)
— disadvantages
« the implementations inherited can’t be changed at run time.

» parent classes often define at least part of their subclasses’
physical representation.

» breaks encapsulation.

« implementation dependencies can cause problems when you’re trying
to reuse a subclass.

* Object composition
— dynamic at run time.
— composition requires objects to respect each others® interfaces.
* but does not break encapsulation.
— any object can be replaced at run time.

— Favoring object composition over class inheritance helps you keep each class
encapsulated and focused on one task.

* Object composition (cont.)
— class and class hierarchies will remain small.

— but will have more objects.

Delegation:

» Two objects are involved in handling a request: a receiving object
delegates operations to its delegate.

rectangle

Y

Area

» Makes it easy to compose behaviors at run-time and to change the way they’re
composed.

» Disadvantage:dynamic, highly parameterized software is harder to understand
than more static software.

* Delegation is a good design choice only when it simplifies more than it complicates.

* Delegation is an extreme example of object composition.

Inheritance versus Parameterized Types

* Let you define a type without specifying all the other types it uses, the
unspecified types are supplied as parameters at the point of use.

+ Parameterized types, generics, or templates.

+ Parameterized types give us a third way to compose behavior in object-
oriented systems.

* Three ways to compose

— object composition lets you change the behavior being composed at run-time,
but it requires indirection and can be less efficient.

— inheritance lets you provide default implementations for operations and lets
subclasses override them.

— parameterized types let you change the types that a class can use.

Relating Run-Time and Compile-Time Structures:

An object-oriented program’s run-time structure often bears little resemblance to its
code structure.

The code structure is frozen at compile-time.

A program’s run-time structure consists of rapidly changing networks
of communicating objects.

The distinction between acquaintance and aggregation is determined more by intent
than by explicit language mechanisms

The system’s run-time structure must be imposed more by the designer than the
language.

The distinction between acquaintance and aggregation is determined more by intent
than by explicit language mechanisms.

The system’s run-time structure must be imposed more by the designer than the
language.

Designing for Change:

A design that doesn’t take change into account risks major redesign in the future.

Design patterns help you avoid this by ensuring that a system can change in specific
ways

— each design pattern lets some aspect of system structure vary independently of
other aspects.

Common Causes of Redesign:

Creating an object by specifying a class explicitly.
Dependence on specific operations.

Dependence on hardware and software platform.

Dependence on object representations or implementations.

Algorithmic dependencies.

Common Causes of Redesign (cont.)

Tight coupling.
Extending functionality by subclassing .

Inability to alter classes conveniently.

Design for Change (cont.)
» Design patterns in application programs.
— Design patterns that reduce dependencies can increase internal reuse.

— Design patterns also make an application more maintainable when they’re
used to limit platform dependencies and to layer a system.

» Design patterns in toolkits

— A toolkit is a set of related and reusable classes designed to provide useful,
general-purpose functionality.

— Toolkits emphasize code reuse. They are the object-oriented equivalent of
subroutine libraries.

— Toolkit design is arguably harder than application design.
« Design patterns in framework

— A framework is a set of cooperating classes that make up a reusable design for a
specific class of software.

— You customize a framework to a particular application by creating application-
specific subclasses of abstract classes from the framework.

— The framework dictates the architecture of your application.

» Design patterns in framework (cont.)
— Frameworks emphasize design reuse over code reuse.

— When you use a foolkit, you write the main body of the application and call the
code you want to reuse. When you use a framework, you reuse the main body
and write the code if calls.

— Advantages: build an application faster, easier to maintain, and more
consistent to their users.

» Design patterns in framework (cont.)
— Mature frameworks usually incorporate several design patterns.
— People who know the patterns gain insight into the framework faster.
— differences between framework and design pattern.
* design patterns are more abstract than frameworks.
» design patterns are smaller architectural elements than frameworks.

» design patterns are less specialized than frameworks.

How To Select a Design Pattern:
>

Consider how design patterns solve design problems.

%

Scan Intent sections.

Study how patterns interrelate.
> ;

Study patterns of like purpose.
¥ ; ,

Examine a Cause of redesign.
>

Consider what should be variable in your design.

[_memento | =
= saving state S
] f i i | pter |
Builder of iteration .
avoidin,
creating m hysleregms l Bridge

composites

enumerating
children oo
iy, COMpPos i

mspo}g)sibﬂlﬁss using Command

addi
to objects
Composite
sharing
Dcc.o rator composttes s ?'gﬂm'ng e delining
ravers.
operations rchaio
i definin;
Flywelght | geng, [visitor_|

changing skin
versus guts

adding.
sharing interpreter operations I Chain of Responsibility 1
strategies
shaﬂng’
termina.
Strate: ” symbols
= Sirasl & Mediator
R -
cpendency
managemaent Observer

State

definin
algorithm's

feps
: Ii Template Method i,_/’ often uses\
—-..-Protot 3
== /’—"—I_Factory Method |

configure factory
dynamically implement using

A\
/Iib-trac! Factory
single
single

instance

Singleton

Figure 1.1: Design pattern relationships

Read the pattern once through for an overview.

Go Back and study the Structure, Participants ,and Collaborations sections.

Look At the Sample Code section to see a concrete
Example of the pattern in code.

Choose names for pattern participants that are meaningful in the application context.

Define the classes.

Purpose Design Pattern Aspect(s) That Can Vary
Creational | Abstract Factory (87) families of product objects
Builder (97) how a composite object gets created
Factory Method (107) subclass of object that is instantiated
Prototype (117) class of object that is instantiated
Singleton (127) the sole instance of a class
Structural | Adapter (139) interface to an object
Bridge (151) implementation of an object
Composite (163) structure and composition of an object
Decorator (175) responsibilities of an object
without subclassing
Facade (185) interface to a subsystem
Flyweight (195) storage costs of objects
Proxy (207) how an object is accessed; its location
Behavioral | Chain of Responsibility (223) | object that can fulfilt a request
Command (233) when and how a request is fulfilled
Interpreter (243) grammar and interpretation of a language
Iterator (257) how an aggregate’s elements are accessed,
traversed
Mediator (273) how and which objects interact with
each other
Memento (283) what private information is stored outside
an object, and when
Observer (293) number of objects that depend on another
object; how the dependent objects stay
up to date
State (305) states of an object
Strategy (315) an algorithm
Template Method (325) steps of an algorithm
Visitor (331) operations that can be applied to obiject(s)
without changing their class(es)

Table 1.2: Design aspects that design patterns let you vary

Unit —11I
A Case Study

Design Problems:

 seven problems in Lexis's design:

Document Structure:
v

The choice of internal representation for the document affects nearly every aspect of
Lexis's design. All editing , formatting, displaying, and textual analysis will require
traversing the representation.

Formatting:
J .
How does Lexi actually arrange text and graphics into lines and columns?
What objects are responsible for carrying out different formatting policies?
How do these policies interact with the document’s internal representation?
Embellishing the user interface:

Lexis user interface include scroll bar, borders and drop shadows that embellish the
WYSIWYG document interface. Such embellishments are likely to change as Lexis user
interface evolves.

Supporting multiple look-and-feel standards:

Lexi should adapt easily to different look-and-feel standards such as Motif and Presentation
Manager (PM) without major modification.

Supporting multiple window systems:

Different look-and-fell standards are usually implemented on different window system.
Lexi’s design should be independent of the window system as possible.

User Operations:

User control Lexi through various interfaces, including buttons and pull-down menus. The
functionality beyond these interfaces is scattered throughout the objects in the application.

Spelling checking and Hyphenation:

How does Lexi support analytical operations checking for misspelled words and
determining hyphenation points? How can we minimize the number of classes we have to
modify to add a new analytical operation?

Document Structure:

Goals:
— present document’s visual aspects
— drawing, hit detection, alignment

— support physical structure
(e.g., lines, columns)

Constraints/forces:
— treat text & graphics uniformly.

— no distinction between one & many.

The internal representation for a document:

— The internal representation should support.

maintaining the document’s physical structure.

generating and presenting the document visually.

mapping positions on the display to elements in the internal representations.

Some constraints:
— we should treat text and graphics uniformly.

— our implementation shouldn’t have to distinguish between single elements and
groups of elements in the internal representation.

Recursive Composition:

— acommon way to represent hierarchically structured information.

chaﬂ/a_clers space Image compositae (row)
S .

4 i

composite (column)

Figure 2.2: Recursive composition of text and graphics

composite
(column)

composite - o o

Figure 2.3: Object structure for recursive composition of text and graphics

Glyphs:

— an abstract class for all objects that can appear in a document structure.

Three basic responsibilities, they know

« How to draw themselves

* What space they occupy

» Their children and parent.

Glyph

Draw(Window)
Intersects(Point)
Insert(Glyph, int)

A

Character

Draw(Window w) © -
Intersects(Point p)

char c

--_-.....0

return true If int p
intersects this charactar

I - —
Rectangle Row
=== Draw(...) Draw(Window w) ©- == === ===
' Intersacts(...) Intersects(Point p) O e e o =i
! Insert(Glyph g, int 1) L4
: H
H i
4 Polygon :
H H
' insert g into
' Draw(...) I chitdren at position | ﬂ
! Intersects(...)
'
)

l w—=DrawCharacter(c) |

children

for all ¢ in children
if c—>Intersects(p) return trus

correctly;
c—=>Draw(w)

forall ¢ in children
ensure ¢ is positioned

Figure 2.4: Partial Glyph class hierarchy

Responsibility Operations
appearance | virtual void Draw(Window*)
virtual void Bounds (Recté&)
hit detection | virtual bool Intersects(const Point&)
structure virtual void Insert (Glyph*, int)
virtual void Remove (Glyph*)
virtual Glyph* Child(int)
virtual Glyph* Parent ()

Table 2.1: Basic glyph interface

Formatting :

» A structure that corresponds to a properly formatted document.
» Representation and formatting are distinct

— the ability to capture the document’s physical structure doesn’t tell us how to
arrive at a particular structure.

* here, we’ll restrict “formatting” to mean breaking a collection of glyphs in to lines.

» Encapsulating the formatting algorithm:
— keep formatting algorithms completely independent of the document structure.
— make it is easy to change the formatting algorithm.

— We’'ll define a separate class hierarchy for objects that encapsulate formatting
algorithms.

* Compositor and Composition:

— We’ll define a Compositor class for objects that can encapsulate a formatting
algorithm.

— The glyphs Compositor formats are the children of a special Glyph subclass
called Composition.

— When the composition needs formatting, it calls its compositor’s Compose
operation.

— Each Compositor subclass can implement a different line breaking algorithm.

Responsibility Operations
what to format | void SetComposition(Composition*)
when to format | virtual void Compose()

Table 2.2: Basic compositor interface

Compositor and Composition (cont):

— The Compositor-Composition class split ensures a strong separation between

code that supports the document’s physical structure and the code for different
formatting algorithms.

Glyph

Insert(Glyph, int)

children
—

i Compositor
Composition <>°°mposﬂor

composition SetComposition()

Glyph::insert(g, i) I I | 7
compositor.Compose()

ArrayCompositor

| Composs()
Insert{Glyph g, inti) ¢
i

SimpleCompositor

TeXCompositor

Compose()

Compose() Compose()

Figure 2.5: Composition and Compositor class relationships

1 compositor

Figure 2.6: Object structure reflecting compositor-directed linebreaking

» Strategy pattern:
— intent: encapsulating an algorithm in an object.

— Compositors are strategies. A composition is the context for a compositor
strategy.

Embellishing the User Interface:

+ Considering adds a border around the text editing area and scrollbars that let the
user view the different parts of the page here

* Transparent Enclosure:
— inheritance-based approach will result in some problems.
— Composition, ScollableComposition, BorderedScrollableComposition.

— object composition offers a potentially more workable and flexible extension
mechanism.

» Transparent enclosure (cont):
— object composition (cont)
« Border and Scroller should be a subclass of Glyph.
— two notions
« single-child (single-component) composition.
+ compatible interfaces.
* Monoglyph

— We can apply the concept of transparent enclosure to all glyphs that embellish
other glyphs.

— the class, Monoglyph .

void MonoGlyph: :Draw(Window™ w) {
_component- - Draw(w):

3

3

void Border:: Draw(Window * w) {
NonoGlyph::Draw(yw):
DrawBorder(w):

-

= Gy ph

Draw(Window)
MonoGlyph
component
Draw(Window)
l |

Border Scroller
Draw(Window) | Draw(Window)
DrawBorder(Window)

=

Figure 2.7: MonoGlyph class relationships

Figure 2.8: Embellished object structure

* Decorator Pattern

— captures class and object relationships that support embellishment by
transparent enclosure.

Component
+ operation()
Ja
ConcreteComponent Decorator
T ——— — gy ToT——
R = component i
+ operationi) .
+ operation()
ConcreteDecorator
+ operationi)

Supporting Multiple Look-and-Feel Standards:
» Design to support the look-and-feel changing at run-time
» Abstracting Object Creation
— widgets
— two sets of widget glyph classes for this purpose

» aset of abstract glyph subclasses for each category of widget
glyph (e.g.. ScrollBar).

« aset of concrete subclasses for each abstract subclass that implement
different look-and-feel standards (e.g., MotifScrollBar and
PMScrollBar).

Abstracting Object Creation (cont):
— Lexi needs a way to determine the look-and-feel standard being targeted

We must avoid making explicit constructor calls

We must also be able to replace an entire widget set easily

We can achieve both by abstracting the process of object creation

* Factories and Product Classes:
— Factories create product objects.
* Abstract Factory Pattern:

— capture how to create families of related product objects without instantiating
classes directly.

GUIFactory

CreateScrollBar()}
CreateButton()
CreateMenu()

A

[I |

MotifFactory PMFactory MacFactory

CreateScrollBar() ©-f-----~
CreateButton() o-F---
CreateMenu() o-

CreateScroliBar() ©-f-----~ ' CreateScrollBar() ©-f-=~----
CreateButton() ~ O~ -=~ CreateButton() o-t---
CreateMenu() o-r CreateMenu() o

return new PMMenu I

return new MacMenuﬁ

return new PMButton i return new MacButton I

return new MotifBunoﬁ

return new MoﬂfScroIlBaﬁ return new F’MS«::n::tllBari ﬂ return new MacScroliBar 1

Figure 2.9: GUIFactory class hierarchy

[|

ScroliBar Button ; Menu
ScrollTo(int) Press() Popup()

: AN i | k o
MotitScroliBar MacScroilBar MotifButton MacButton MotifMenu MacMenu
ScrollTo(int) ScroliTo(int) Press() Press() Popup() Popupt)

PMScrollBar PMButton PMMenu
ScroliTo(int)’ Press() Popup()

Figure 2.10: Abstract product classes and concrete subclasses

Supporting Multiple Window Systems:

« We’d like Lexi to run on many existing window systems having
different programming interfaces.

» Can we use an Abstract Factory?

— As the different programming interfaces on these existing window systems,
the Abstract Factory pattern doesn‘t work.

— We need a uniform set of windowing abstractions that lets us take different
window system impelementations and slide any one of them under a common
interface.

+ Encapsulating Implementation Dependencies

— The Window class interface encapsulates the things windows tend to do across
window systems

— The Window class is an abstract class

— Where does the implementation live?

+ Window and WindowImp :

Responsibility Operations

void Redraw()
void Raise()
void Lowexr ()
void Iconify ()
void Deiconify ()

virtual
virtual
virtual
virtual
virtual

window management

. &

DrawLine (...)
DrawRect (...)
DrawPolygon(...)
DrawText (.. .)

void
void
void
void

virtual
virtual
virtual
virtual

graphics

Table 2.3: Window class interface

Glyph - glyph Window
Draw(Window) Redraw() ©-q~--~—-=-- <l glyph—>Draw(this) v ﬁ
leonify()
Lower()
Drawline()
ApplicationWindow IconWindow DialogWindow awner.
Iconify() Lower() @
v
:
l owner-->Lowear() !
window
imp
=00 . Windowimp
DrawRect(...} DeviceRaise()
)\ DeviceRecly(...)

| |
ﬁpmmﬂonWIndﬂ]TDI&IQgWIndOW | *

l tconWindow I

—

I

l

DeviceRect(...}

MacWindowimp PMWindowlimp XWindowlmp
DaviceRaise() DeviceRaise() DeviceRaise()
DeviceRect(...)

DeviceRect(...)

* Bridge Pattern

— to allow separate class hierarchies to work together even as they evolve
independently.

User Operations:
* Requirements
— Lexi provides different user interfaces for the operations it supported.
— These operations are implemented in many different classes.
— Lexi supports undo and redo.

» The challenge is to come up with a simple and extensible mechanism that satisfies all
of these needs.

* Encapsulating a Request

— We could parameterize Menultem with a function to call, but that’s not a
complete solution.

» it doesn’t address the undo/redo problem.
» it’s hard to associate state with a function.
» functions are hard to extent, and it’s hard to reuse part of them.
— We should parameterize Menultems with an ebject, not a function.
+ Command Class and Subclasses

— The Command abstract class consists of a single abstract operation called
“Execute”.

— Menultem can store a Command object that encapsulates a request.

— When a user choose a particular menu item, the Menultem simply calls
Execute on its Command object to carry out the request.

Command

Execute()

I

save

QuitCommand

PasteCommand FontCommand SaveCommand
Execute() @ Execute() <@ Execute() @
buffer newFont E

Exacuta() @

TR P 4

[
'
'
'
]

aste buffer
nto document

make selected
text appear in
newFont

gop up a dialog
ox that lets the
user name the
document, and
then save the
document under
that name

it (document is modified) {
save—>Exacute()

}
quil the application

Figure 2.11: Partial Command class hierarchy

Glyph

A

Menuitem

command

Clicked()

Q

command-—>Execute(); @

= Command

Execute()}

A

Figure 2.12: Menultem-Command relationship

» Undoability

— To undo and redo commands, we add an Unexecute operation to Command’s

interface.

— A concrete Command would store the state of the Command for Unexecute .

— Reversible operation returns a Boolean value to determine if a command is

undoable.

Command History

— a list of commands that have been executed.

past commands

present

* The command history can be seen as a list of past commands commands .
* As new commands are executed they are added to the front of the history.

Undoing the Last Command:

unexecute()

present present

» To undo a command, unexecute() is called on the command on the front of the list.
» The “present” position is moved past the last command.

Undoing Previous command:

nexecute ()

Ul
~—

|
:

i

i i o

- . . :
§

i

present presemt

Redoing the Next Command:

+ To redo the command that was just undone, execute() is called on that command.

+ The present pointer is moved up past that command.

The Command Pattern:

L]

Encapsulate a request as an object

The Command Patterns lets you
— parameterize clients with different requests
— queue or log requests
— support undoable operations

+ Also Known As: Action, Transaction.

Spelling Checking & Hyphenation:

Goals:

— analyze text for spelling errors.

— introduce potential hyphenation sites.
Constraints/forces:

— support multiple algorithms.
— don’t tightly couple algorithms with document structure.

Solution: Encapsulate Traversal:

Iterator

— encapsulates a traversal algorithm without exposing representation details to

callers.
— uses Glyph’s child enumeration operation.
— This is an example of a “preorder iterator”.
>

TERATOR object behavioral
Intent

access elements of a container without exposing its representation
Applicability:

— require multiple traversal algorithms over a container

— require a uniform traversal interface over different containers

— when container classes & traversal algorithm must vary independently

Structure:

Aggregate (Glyph) |~ 5 | Merator
createlterator() first()
nexi()
isDone()
A currentitem()

ConcreteAggregate

Concretelterator

createlterator() @

return new Concretelterator(this)

Consequences

+ flexibility: aggregate & traversal are independent.
+ multiple iterators & multiple traversal algorithms.

+ additional communication overhead between iterator & aggregate.

Implementation

— internal versus external iterators.

— violating the object structure’s encapsulation.

— robust iterators .

— synchronization overhead in multi-threaded programs.

— batching in distributed & concurrent programs.

Known Uses

— (C++ STL iterators.
— JDK Enumeration, Iterator .

— Unidraw iterator.

Visitor:

defines action(s) at each step of traversal.
avoids wiring action(s) into Glyphs.
iterator calls glyph’s accept(Visitor) at each node.

accept() calls back on visitor (a form of “static polymorphism” based on method
overloading by type).

void Character::accept (Visitor &v) { v.visit (*this); }
class Visitor {
public:

virtual void visit (Character &);

virtual void visit (Rectangle &);

virtual void visit (Row &);

/1 ete. for all relevant Glyph subclasses

b

SpellingCheckerVisitor :
» gets character code from each character glyph.
Can define getCharCode() operation just on Character() class
» checks words accumulated from character glyphs.

* combine with Preorderlterator .

class SpellCheckerVisitor : public Visitor {
public:

virtual void visit (Character &);

virtual void visit (Rectangle &);

virtual void visit (Row &);

// ete. for all relevant Glyph
subclasses Private:

std::string accumulator_;

¥

Accumulating Words:

Spelling check performed when a nonalphabetic character it reached.

Interaction Diagram:

iterator
—

» The iterator controls the order in which accept() is called on each glyph in
the composition.

« accept() then “visits” the glyph to perform the desired action.

» The Visitor can be sub-classed to implement various desired actions.

aCharacter ("a”)

accept{aSpellingChecker)

I

accept{aSpellingChecker)

|

anotherCharacter ("_")

visit(this)

=

]

L, visit(this)

aSpellingChecker
getCharCode()
checks
:]— cornpletea
word
|25
getCharCode()

LT

HyphenationVisitor:
« gets character code from each character glyph
* examines words accumulated from character glyphs

» at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor
{ public:

void visit (Character &);

void visit (Rectangle &);

void visit (Row &);

/I ete. for all relevant Glyph subclasses

33

Concluding Remarks:
* design reuse.
* uniform design vocabulary.
+ understanding, restructuring, & team communication.
« provides the basis for automation.

* a‘“new” way to think about design.

Creational Patterns :

e Abstracts instantiation process

e Makes system independent of how its objects are—

— created
— composed

— represented

e Creational patterns encapsulates knowledge about which concrete classes the
system uses

e Hides how instances of these classes are created and put together

e Important if systems evolve to depend more on object composition than on class
inheritance

e Empbhasis shifts from hardcoding fixed sets of behaviors towards a smaller set

of composable fundamental behaviors

Encapsulate knowledge about concrete classes a system— uses

Hide how instances of classes are created and put together

What are creational patterns?

e Design patterns that deal with object creation— mechanisms, trying to create objects
in a manner suitable to the situation

e Make a system independent of the way in which— objects are created, composed and

represented

Recurring themes :

e Encapsulate knowledge about which concrete classes the system uses (so we
can change them easily later)
e Hide how instances of these classes are created and put together (so we can change

it easily later)

Benefits of creational patterns :

Creational patterns let you program to an interface defined by an abstract class that lets you
configure a system with “product” objects that vary widely in structure and functionality

Example:

GUI systems.

Interviews GUI class library.

Multiple look-and-feels.

Abstract Factories for different screen components.

Generic instantiation — Objects are instantiated— without having to identify a

specific class type in client code (Abstract Factory, Factory) .

Simplicity — Make instantiation easier: callers do not— have to write long complex

code to instantiate and set up an object (Builder, Prototype pattern).

Creation constraints — Creational patterns can put— bounds on who can create

objects, how they are created, and when they are created .
Abstract Factory Pattern

Abstract factory provide an interface for creating families of related or dependent objects

without specifying their concrete classes

* Intent:

— Provide an interface for creating families of related or dependent objects

without specifying their concrete classes
Also Known As: Kit.
Motivation:

User interface toolkit supports multiple look-and-feel standards (Motif,

Presentation Manager).
Different appearances and behaviors for UI widgets

Apps should not hard-code its widgets

ABSTRACT FACTORY
Motivation

Widget Factory Client
CreateScrollBar(
|_CreateWindow() |
Windows
" PMWindow MotifWindow fe- -~
| }
| |
MotifWidgetFactory |, | PMWidgetFactory -; :
| |
CreateScroflBar) | 1 | CreateScroliBar() | | |
}
CreateWindow) | 1 | CreateWindow() | | ScroliBar .
| 1 '.
i | i
\ | i
: L PMScroliBar MotifScroliBar - - -:
I I
| I
-t s .2 B A i, o g 1
Solution:

» Abstract Widget Factory class

« Interfaces for creating each basic kind of widget

» Abstract class for each kind of widgets,

« Concrete classes implement specific look-and-feel.

Abstract Factory Structure

AbsiractFaclory
Operations
CreateProdA|)

CreataProcHl |

AnstracProductA

ConcreteFactory? ConcreteFadiory?
Operations: Operations

CreateProdAl | CraateProdA{ } s
CreateProcB(| CreataProcS |

AbstractProductB

|
TR R AR e T e i S ””/Cwmmwm‘J r(:nncmlgpmduclﬁi }1 s

Abtract Factory :
Declares interface for operations that create abstract product objects

Concrete Factory :

— Implements operations to create concrete product objects

Abstract Product :

— Declares an interface for a type of product object.

Concrete Product:

— Defines a product object to be created by concrete factory

— Implements the abstract product interface

Client:

— Uses only interfaces declared by Abstract Factory and AbstractProduct

classes.

Collaborators :

» Usually only one ConcreteFactory instance is used for an activation, matched to a
specific application context. It builds a specific product family for client use -- the
client doesn’t care which family is used -- it simply needs the services appropriate

for the current context.

» The client may use the AbstractFactory interface to initiate creation, or some

other agent may use the AbstractFactory on the client’s behalf.

Presentation Remark :

» Here, we often use a sequence diagram (event-trace) to show the dynamic

interactions between participants.

» For the Abstract Factory Pattern, the dynamic interaction is simple, and a

sequence diagram would not add much new information.

Consequences :
» The Abstract Factory Pattern has the following benefits:
— It isolates concrete classes from the client.

» You use the Abstract Factory to control the classes of objects the

client creates.

» Product names are isolated in the implementation of the
ConcreteFactory, clients use the instances through their

abstract interfaces.
— Exchanging product families is easy.

« None of the client code breaks because the abstract interfaces

don’t change.

« Because the abstract factory creates a complete family of products, the

whole product family changes when the concrete factory is changed.

— It promotes consistency among products.

» It is the concrete factory’s job to make sure that the right products

are used together.

More benefits of the Abstract Factory Pattern

— It supports the imposition of constraints on product families, e.g., always use

Al and B1 together, otherwise use A2 and B2 together.
* The Abstract Factory pattern has the following liability:
— Adding new kinds of products to existing factory is difficult.

» Adding a new product requires extending the abstract interface which implies that all
of its derived concrete classes also must change.

+ Essentially everything must change to support and use the new product family

» abstract factory interface is extended

» derived concrete factories must implement the extensions

» anew abstract product class is added

« anew product implementation is added

+ client has to be extended to use the new product

Implementation
» Concrete factories are often implemented as singletons.
» Creating the products

— Concrete factory usually use the factory method.

« simple
» new concrete factory is required for each product family
— alternately concrete factory can be implemented using prototype.

+ only one is needed for all families of products

» product classes now have special requirements - they participate in

the creation
» Defining extensible factories by using create function with an argument
— only one virtual create function is needed for the AbstractFactory interface

— all products created by a factory must have the same base class or be able to be

safely coerced to a given type

— it is difficult to implement subclass specific operations

Know Uses:-
* Interviews

— used to generate “look and feel” for specific user interface objects

— uses the Kit suffix to denote AbstractFactory classes, e.g., WidgetKit and
DialogKit.

— also includes a layoutKit that generates different composite objects depending

on the needs of the current context

ET++

— another windowing library that uses the AbstractFactory to achieve portability

across different window systems (X Windows and SunView).

Related Patterns:-
» Factory Method -- a “virtual” constructor
« Prototype -- asks products to clone themselves

+ Singleton -- allows creation of only a single instance

Code Examples:-
* Skeleton Example
— Abstract Factory Structure
— Skeleton Code
* Neural Net Example
— Neural Net Physical Structure
— Neural Net Logical Structure

— Simulated Neural Net Example

BUILDER :-

« Intent:

Separate the construction of a complex object from its representation so that the same

construction process can create different representations

* Motivation:
« RTF reader should be able to convert RTF to many text format

« Adding new conversions without modifying the reader should be easy

* Solution:
+ Configure RTFReader class with a Text Converter object
» Subclasses of Text Converter specialize in different conversions and formats

« TextWidgetConverter will produce a complex UI object and lets the user

see and edit the text

BUILDER Motivation:-

RTFReader

ParseRTF() A

while(t=get the next token)|
switch t.Type(

CHAR:
builder->CornventCharacter(t.Char)
FONT:
builder->ConventFontChamge(t.Font)
PARA:
Builder->ConvemParagraph()
)
J

S

TextConverter

ConvenCharacter(char)
ConvertFontChange(Font)

Applicability:-

ConvertParagraph()

r e .H.,;_ e
ASClIConverter TextConverter TextWidgestConverter
ConvertCharacter(char) ConvertCharacter{char) ConvertCharacter(char)
GetASCHText() ConvertFontChange(Font) ConvertFontChange(Fonty

ConvertParagraph(ConvertParagraph(
: GelTexText) GelTextwWidget)
s ASCIIText Leeonl TeXText Textwidget

» Use the Builder pattern when

— The algorithm for creating a complex object should be independent of the

parts that make up the object and how they are assembled

— The construction process must allow different representations for the object

that is constructed

BUILDER Structure:-

Director pnisiot i

Construct() ©

for all obpects in structure |
bl der. > BuildPan ()
}

bBuilders

ConcreteBuilder

BuilaFarnt ()
G esu i)

31 Product

Builder — Collaborations:-

+ Client creates Director object and configures it with the desired Builder object
« Director notifies Builder whenever a part of the product should be built
 Builder handles requests from the Director and adds parts to the product

« Client retrieves the product from the Builder

aClient aDirector
new ConcreteBuilder
new Director (aConcreteBuilder)
s RN PN R AN RSP AN N RN NS NC TR RN RS s
BuildPart A{)
BuildPart C ()
GetResult()

Why do we use Builder?

Common manner
to Create an

public class Room {
private int area;
private int windows;
public String purpose;

Instance
— Constructor! ?00'“0{
— Each Parts

determined by
Parameter of the
Constructor

Room(int newArea, int
new

indows, String newPurpose){
area = newArea;
windows = newWindows;
purpose = newPurpose;

In the previous example,

— We can either determine all the arguments
or determine nothing and just construct.

We can’t determine arguments partially.

— We can’t control whole process to

Create an instance.
— Restriction of ways to Create an Object

— Bad Abstraction & Flexibility

Discussion:-

Uses Of Builder
— Parsing Program(RTF converter)

- GUI

FACTORY METHOD (Class Creational):-

+ [Intent:

— Define an interface for creating an object, but let subclasses decide which

class to instantiate.
— Factory Method lets a class defer instantiation to subclasses.
» Motivation:

— Framework use abstract classes to define and maintain relationships between

objects

— Framework has to create objects as well - must instantiate classes but only

knows about abstract classes - which it cannot instantiate

Motivation:-

» Motivation: Factory method encapsulates knowledge of which subclass to create -

moves this knowledge out of the framework

» Also Known As: Virtual Constructor

FACTORY METHOD Motivation:-

docs
Document g—s-——— Application
Open()
. t
Close() CreateDocument()
Save() NewDocument() 4
Revert() OpenDocument()
r 3 L
Application
MyDocument MyApp
return new MyDocument

-
CreateDocument()

Applicability:-

« Use the Factory Method pattern when

— aclass can't anticipate the class of objects it must create.

— aclass wants its subclasses to specify the objects it creates.

— classes delegate responsibility to one of several helper subclasses,

and you want to localize the knowledge of which helper subclass is

the delegate.

FACTORY METHOD Structure:-

Product

ConcreteProduct

Participants:-

¢ Product

Creator

FactoryMethod()

AnOperation() @-esrereooee

[jrodu ct= FactoryMeth od()

SEEnagREedy

e

ConcreteCreator

%, .o

FactoryMeth od()

return new ConcreteProduct

— Defines the interface of objects the factory method creates

¢ ConcreteProduct

— Implements the product interface

* (Creator

— Declares the factory method which returns object of type product

— May contain a default implementation of the factory method

— Creator relies on its subclasses to define the factory method so that it returns

an instance of the appropriate Concrete Product.
» ConcreteCreator
— Overrides factory method to return instance of ConcreteProduct

Factory Method:-

» Defer object instantiation to subclasses

Eliminates binding of application-specific subclasses

Connects parallel class hierarchies

A related pattern is AbstractFactory

Product Creator
operation() Product createProduct()
ConcreteProduct [« ConcreteCreator
operation() Product createProduct() (_)--

UNIT-HI

PROTOTYPE (Object Creational):-
¢ Intent:

— Specify the kinds of objects to create using a prototypical instance, and create

new objects by copying this prototype.
* Motivation:

— Framework implements Graphic class for graphical components and

GraphicTool class for tools manipulating/creating those components
Motivation:-
— Actual graphical components are application-specific

— How to parameterize instances of Graphic Tool class with type of objects to

create?

— Solution: create new objects in Graphic Tool by cloning a prototype object

instance

PROTOTYPE Motivation:-

Tool - Graphic
Manipulate() Draw(Position)
I i Clone()
prototype |
\\ i ; /\\ e
Staff MusicalNote
Rotate Tool Graphic Tool |e | Draw(Position)
Manipulate() Manipulate() Clone()
? @
- WholeNote HalfNote

}

p = prototype ->Clone()
while(user drags mousej
p ->Draw(new position)

Insertp into drawing

Draw(Position)

Clone()

Draw(Fosition)
Clone() 4

1 i
[Return copy of self ‘ Return copy of self

Applicability:-

» Use the Prototype pattern when a system should be independent of how its

products are created, composed, and represented;

— when the classes to instantiate are specified at run-time, for example, by

dynamic loading; or

— to avoid building a class hierarchy of factories that parallels the class hierarchy
of products; or when instances of a class can have one of only a few different
combinations of state. It may be more convenient to install a corresponding
number of prototypes and clone them rather than instantiating the class

manually, each time with the appropriate state.

PROTOTYPE Structure:-

Operation() ¢ Clone()
i

p= prototype ->Clone() i é

i]

ConcretePrototype1 ConcretePrototype2

Clone() ¢ Clone() ¢

return copy of self

return copy of seL] ,

Participants:
» Prototype (Graphic)
— Declares an interface for cloning itself
» ConcretePrototype (Staff, WholeNote, HalfNote)
— Implements an interface for cloning itself
» Client (GraphicTool)
— Creates a new object by asking a prototype to clone itself
Collaborations:
» A client asks a prototype to clone Itself.
SINGELTON:-
* Intent:
— Ensure a class only has one instance, and provide a global point of access to it.
» Motivation:

— Some classes should have exactly one instance

(one print spooler, one file system, one window manager)

— A global variable makes an object accessible but doesn’t prohibit instantiation

of multiple objects
— Class should be responsible for keeping track of its sole interface
Applicability:-
» Use the Singleton pattern when

— there must be exactly one instance of a class, and it must be accessible to

clients from a well-known access point.

— when the sole instance should be extensible by subclassing, and clients should

be able to use an extended instance without modifying their code.

SINGLETON Structure:-

Singleton

SIALC INSIANCO() @ wms o s o e e return uniquelnstance

Singleton Operation()
GetSingletonData()

Static uniquelnstance
singletonData

Participants and Collaborations:-

» Singleton:

« Defines an instance operation that lets clients access its unique interface

» Instance is a class operation (static in Java)

» May be responsible for creating its own unique instance

» Collaborations:

+ Clients access a Singleton instance solely through Singleton’s Instance operation.
Singleton:-

» Ensures a class has only one instance

» Provides a single point of reference

Singleton — Use When:-
* There must be exactly one instance of a class.
» May provide synchronous access to avoid deadlocks.

» Very common in GUI toolkits, to specify the connection to the

OS/Windowing system
Singleton — Benefits:-
» Controls access to a scarce or unique resource
» Helps avoid a central application class with various global object references

» Subclasses can have different implementations as required. Static or global references

don’t allow this

« Multiple or single instances can be allowed

Singleton — Example 1:-

« An Application class, where instantiating it makes a connection to the base operating

system and sets up the rest of the toolkit’s framework for the user interface.
» In the Qt toolkit:
QApplication* app = new QApplication(argc, argv)
Singleton — Example 2:-

« A status bar is required for the application, and various application pieces need to be
able to update the text to display information to the user. However, there is only one
status bar, and the interface to it should be limited. It could be implemented as a
Singleton object, allowing only one instance and a focal point for updates. This
would allow updates to be queued, and prevent messages from being overwritten too

quickly for the user to read them.

Singleton Code [1]:-

class Singleton {

public:
static Singleton™ Instance();
protected:
Singleton();
private:
Static Singleton* _instance
} \“‘/! Cannot access directly.

Singleton Code |2]:-

Singleton™ SiNngleton:t__instance=0;

Singleton™ Singleton:: Instance(){

iT(_instanmnce ====0) {
instanmnces=mnew Sinuietomn;
>
Returnmn _instance;

¥
if (_instance ==0) {
_instance=new Singleton;

}

Return _instance;

/I Clients access the singleton
// exclusively via the Instance member

/1 function.

Implementation Points:-

+ Generally, a single instance is held by the object, and controlled by a single interface.

+ Sub classing the Singleton may provide both default and overridden functionality.

UNIT-III

Structural Pattern Part-1

Structural patterns

In Software Engineering, Structural Design Patterns are Design Patterns that ease the design

by identifying a simple way to realize relationships between entities.

Client «interface»

Shape

+display(in x1, in y1, in X2, in y2)

O

«adaptee»
Rectangle LegacyRectangle

+display(in x1, in y1, in x2, in y2) +display(in x1, in y1, in w, in h)

Delegate and map to adaptee.

Adapter
Match interfaces of different classes

Bridge
Separates an object’s interface from its implementation

Composite
A tree structure of simple and composite objects

Decorator
Add responsibilities to objects dynamically

Facade
A single class that represents an entire subsystem

Flyweight
A fine-grained instance used for efficient sharing

Client «interface»

Shape

+display(in x1, in y1, in x2, in y2)

~ «adaptee»
ectangle LegacyRectangle
+display(in x1, in y1, in x2, in y2) +display(in x1, in y1, inw, in h)

8

Delegate and map to adaptee. N
Private Class Data

Restricts accessor/mutator access

Proxy
An object representing another object

Rules of thumb

1. Adapter makes things work after they're designed; Bridge makes them work
before they are.

2. Bridge is designed up-front to let the abstraction and the implementation vary
independently. Adapter is retrofitted to make unrelated classes work together.

3. Adapter provides a different interface to its subject. Proxy provides the same
interface. Decorator provides an enhanced interface.

4. Adapter changes an object's interface, Decorator enhances an object's
responsibilities. Decorator is thus more transparent to the client. As a consequence,
Decorator supports recursive composition, which isn't possible with pure Adapters.

5. Composite and Decorator have similar structure diagrams, reflecting the fact that
both rely on recursive composition to organize an open-ended number of objects.

6. Composite can be traversed with Iterator. Visitor can apply an operation over a
Composite. Composite could use Chain of responsibility to let components access global
properties through their parent. It could also use Decorator to override these properties on
parts of the composition. It could use Observer to tie one object structure to another and
State to let a component change its behavior as its state changes.

7. Composite can let you compose a Mediator out of smaller pieces through recursive
composition.

8. Decorator lets you change the skin of an object. Strategy lets you change the guts.

9. Decorator is designed to let you add responsibilities to objects without subclassing.
Composite's focus is not on embellishment but on representation. These intents are
distinct but complementary. Consequently, Composite and Decorator are often used
in concert.

10. Decorator and Proxy have different purposes but similar structures. Both describe
how to provide a level of indirection to another object, and the implementations keep a
reference to the object to which they forward requests.

11. Facade defines a new interface, whereas Adapter reuses an old interface.
Remember that Adapter makes two existing interfaces work together as opposed to
defining an entirely new one.

12. Facade objects are often Singleton because only one Facade object is required.

13. Mediator is similar to Facade in that it abstracts functionality of existing classes.
Mediator abstracts/centralizes arbitrary communication between colleague objects, it
routinely "adds value", and it is known/referenced by the colleague objects. In
contrast, Facade defines a simpler interface to a subsystem, it doesn't add new
functionality, and it is not known by the subsystem classes.

14. Abstract Factory can be used as an alternative to Facade to hide platform-
specific classes.

15. Whereas Flyweight shows how to make lots of little objects, Facade shows how
to make a single object represent an entire subsystem.

16. Flyweight is often combined with Composite to implement shared leaf nodes.

17. Flyweight explains when and how State objects can be shared.

Adapter Design Patterns

Intent

. Convert the interface of a class into another interface clients expect. Adapter lets
classes work together that couldn't otherwise because of incompatible interfaces.

. Wrap an existing class with a new interface.

. Impedance match an old component to a new system

Problem

An "off the shelf" component offers compelling functionality that you would like to reuse,
but its "view of the world" is not compatible with the philosophy and architecture of the
system currently being developed.

Discussion

Reuse has always been painful and elusive. One reason has been the tribulation of designing
something new, while reusing something old. There is always something not quite right
between the old and the new. It may be physical dimensions or misalignment. It may be
timing or synchronization. It may be unfortunate assumptions or competing standards.

It is like the problem of inserting a new three-prong electrical plug in an old two-prong
wall outlet — some kind of adapter or intermediary is necessary.

Adapter is about creating an intermediary abstraction that translates, or maps, the old
component to the new system. Clients call methods on the Adapter object which redirects
them into calls to the legacy component. This strategy can be implemented either with
inheritance or with aggregation.

Adapter functions as a wrapper or modifier of an existing class. It provides a different
or translated view of that class.

Structure

Below, a legacy Rectangle component's display() method expects to receive "X, y, w, h"
parameters. But the client wants to pass "upper left x and y" and "lower right x and y".
This incongruity can be reconciled by adding an additional level of indirection — i.e. an
Adapter object.

Client «interfacen
> Shape

+disptay(in x1, in y1, in x2, in y2)

«adaptee»
Rectangle LegacyRectangle
+display(in x1, in y1, inx2, in y2) +display(in x1, in y1, in w, in h)

Delegate and map to adaptee.

The Adapter could also be thought of as a "wrapper".

Client dnterface

7 Shape
+display(in x1, iny1, in x2, in y2)

«adaptee»
Rectangle LegacyRectangle
+display(inx1, iny1, inx2, iny2| +display(inx1, iny?, inw, inh)

1
t
i
f
I
1
I

Delegate and map o adaptee.

Example

The Adapter pattern allows otherwise incompatible classes to work together by converting
the interface of one class into an interface expected by the clients. Socket wrenches provide
an example of the Adapter. A socket attaches to a ratchet, provided that the size of the drive
is the same. Typical drive sizes in the United States are 1/2" and 1/4". Obviously, a 1/2" drive
ratchet will not fit into a 1/4" drive socket unless an adapter is used. A 1/2" to 1/4" adapter
has a 1/2" female connection to fit on the 1/2" drive ratchet, and a 1/4" male connection to fit
in the 1/4" drive socket.

Client

«interface»
Shape

Check list
1.

- ol

+display(in x1, in y1, in x2, in y2)

AN

Rectangle

«adaptee»
LegacyRectangle

+display(in x1, in y1, in x2, in y2)

1
4

Delegate and map to adaptee.

+display(in x1, in y1, in w, in h)

Identify the players: the component(s) that want to be accommodated (i.e. the

client), and the component that needs to adapt (i.e. the adaptee).

Identify the interface that the client requires.

Design a "wrapper" class that can "impedance match" the adaptee to the client.

The adapter/wrapper class "has a" instance of the adaptee class.

The adapter/wrapper class "maps" the client interface to the adaptee interface.

The client uses (is coupled to) the new interface

Rules of thumb

Adapter makes things work after they're designed; Bridge makes them work
before they are.

Bridge is designed up-front to let the abstraction and the implementation vary
independently. Adapter is retrofitted to make unrelated classes work together.

Adapter provides a different interface to its subject. Proxy provides the
same interface. Decorator provides an enhanced interface.

Adapter is meant to change the interface of an existing object. Decorator enhances
another object without changing its interface. Decorator is thus more transparent to
the application than an adapter is. As a consequence, Decorator supports recursive
composition, which isn't possible with pure Adapters.

Facade defines a new interface, whereas Adapter reuses an old interface.
Remember that Adapter makes two existing interfaces work together as opposed to
defining an entirely new one.

Bridge Design Pattern

Intent

Decouple an abstraction from its implementation so that the two can
vary independently.

Publish interface in an inheritance hierarchy, and bury implementation in its
own inheritance hierarchy.

Beyond encapsulation, to insulation

Problem

"Hardening of the software arteries" has occurred by using subclassing of an abstract base
class to provide alternative implementations. This locks in compile-time binding between
interface and implementation. The abstraction and implementation cannot be independently
extended or composed.

Motivation

Consider the domain of "thread scheduling".

Client

«interface»
Shape

+display(in x1, in y1, in x2, in y2)

Rectangle

«adaptee»
LegacyRectangle

+display(in x1, in y1, in X2, in y2)

Delegate and map to adaptee.

+display{in x1, in y1, inw, in h)

There are two types of thread schedulers, and two types of operating systems or "platforms".
Given this approach to specialization, we have to define a class for each permutation of
these two dimensions. If we add a new platform (say ... Java's Virtual Machine), what would

our hierarchy look like?

Client

«interface»
Shape

+display(in x1, in y1, in X2, in y2)

Rectangle

«adaptee»
LegacyRectangle

+display(in x1, in y1, in x2, in y2)

Delegate and map to adaptee.

+display(in x1, in y1, in w, in h)

What if we had three kinds of thread schedulers, and four kinds of platforms? What if we
had five kinds of thread schedulers, and ten kinds of platforms? The number of classes we
would have to define is the product of the number of scheduling schemes and the number of

platforms.

The Bridge design pattern proposes refactoring this exponentially explosive inheritance
hierarchy into two orthogonal hierarchies — one for platform-independent abstractions, and
the other for platform-dependent implementations.

Client «interface»
Shape

+display(in x1, in y1, in x2, in y2)

«adaptee»
Rectangle LegacyRectangle
+display(in x1, in y1, in x2, in y2) +display(in x1, in y1, in w, in h)

Delegate and map to adaptee.

Discussion

Decompose the component's interface and implementation into orthogonal class hierarchies.
The interface class contains a pointer to the abstract implementation class. This pointer is
initialized with an instance of a concrete implementation class, but all subsequent interaction
from the interface class to the implementation class is limited to the abstraction maintained
in the implementation base class. The client interacts with the interface class, and it in turn
"delegates" all requests to the implementation class.

The interface object is the "handle" known and used by the client; while the
implementation object, or "body", is safely encapsulated to ensure that it may continue to
evolve, or be entirely replaced (or shared at run-time.

Use the Bridge pattern when:

B you want run-time binding of the implementation,

. you have a proliferation of classes resulting from a coupled interface and numerous
implementations,

. you want to share an implementation among multiple objects,

. you need to map orthogonal class hierarchies.

Consequences include:
. decoupling the object's interface,

. improved extensibility (you can extend (i.e. subclass) the abstraction
and implementation hierarchies independently),

. hiding details from clients.

Bridge is a synonym for the "handle/body" idiom. This is a design mechanism that
encapsulates an implementation class inside of an interface class. The former is the body,
and the latter is the handle. The handle is viewed by the user as the actual class, but the work
is done in the body. "The handle/body class idiom may be used to decompose a complex
abstraction into smaller, more manageable classes. The idiom may reflect the sharing of a
single resource by multiple classes that control access to it (e.g. reference counting)."

Structure

The Client doesn’t want to deal with platform-dependent details. The Bridge pattern
encapsulates this complexity behind an abstraction "wrapper".

Bridge emphasizes identifying and decoupling "interface" abstraction from
"implementation" abstraction.

Client «interface»
N Shape

+display(in x1, in y1, in x2, in y2)

«adaptee»
Rectangle LegacyRectangle
~
+display(in x1, in y1, in x2, in y2) +display(in x1, in y1, inw, in h)

Delegate and map to adaptee.

Example

The Bridge pattern decouples an abstraction from its implementation, so that the two can vary
independently. A household switch controlling lights, ceiling fans, etc. is an example of the
Bridge. The purpose of the switch is to turn a device on or off. The actual switch can be
implemented as a pull chain, simple two position switch, or a variety of dimmer switches.

Client «interface»

Shape

\V4

+display(in x1, in y1, in x2, in y2)

ﬁl

' «adaptee»
Rectangle LegacyRectangle
N
T
+display(in x1, iny1,in x2, in y2) +display(in x1, in y1, inw, in h)
Delegate and map to adaptee.
|
Check list
1. Decide if two orthogonal dimensions exist in the domain. These independent

concepts could be: abstraction/platform, or domain/infrastructure, or front-end/back-
end, or interface/implementation.

2. Design the separation of concerns: what does the client want, and what do
the platforms provide.

3. Design a platform-oriented interface that is minimal, necessary, and sufficient.
Its goal is to decouple the abstraction from the platform.

4. Define a derived class of that interface for each platform.

5. Create the abstraction base class that "has a" platform object and delegates the
platform-oriented functionality to it.

6. Define specializations of the abstraction class if desired.

Rules of thumb

. Adapter makes things work after they're designed; Bridge makes them work
before they are.

. Bridge is designed up-front to let the abstraction and the implementation vary
independently. Adapter is retrofitted to make unrelated classes work together.

. State, Strategy, Bridge (and to some degree Adapter) have similar solution
structures. They all share elements of the "handle/body" idiom. They differ in intent -

that is, they solve different problems.

. The structure of State and Bridge are identical (except that Bridge admits hierarchies
of envelope classes, whereas State allows only one). The two patterns use the same
structure to solve different problems: State allows an object's behavior to change along
with its state, while Bridge's intent is to decouple an abstraction from its
implementation so that the two can vary independently.

» If interface classes delegate the creation of their implementation classes (instead of
creating/coupling themselves directly), then the design usually uses the Abstract Factory
pattern to create the implementation objects.

Composite Design Pattern

Intent

. Compose objects into tree structures to represent whole-part hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly.

Recursive composition
. "Directories contain entries, each of which could be a directory."

1-to-many "has a" up the "is a" hierarchy

Problem

Application needs to manipulate a hierarchical collection of "primitive" and "composite"
objects. Processing of a primitive object is handled one way, and processing of a composite
object is handled differently. Having to query the "type" of each object before attempting
to process it is not desirable.

Discussion

Define an abstract base class (Component) that specifies the behavior that needs to be
exercised uniformly across all primitive and composite objects. Subclass the Primitive and
Composite classes off of the Component class. Each Composite object "couples” itself
only to the abstract type Component as it manages its "children".

Use this pattern whenever you have "composites that contain components, each of
which could be a composite".

Child management methods [e.g. addChild(), removeChild()] should normally be defined in
the Composite class. Unfortunately, the desire to treat Primitives and Composites uniformly
requires that these methods be moved to the abstract Component class. See the "Opinions"
section below for a discussion of "safety" versus "transparency" issues.

Structure
Composites that contain Components, each of which could be a Composite.

Client «interface»
Shape
+display(in x1, in y1, in x2, in y2)
25
«adaptee»
Rectangle LegacyRectangle
+display(in x1, in y1, in x2, in y2) +display(in x1, in y1, in w, in h)

Delegate and map to adaptee.

Menus that contain menu items, each of which could be a menu.

Row-column GUI layout managers that contain widgets, each of which could be a row-
column GUI layout manager.

Directories that contain files, each of which could be a directory.

Containers that contain Elements, each of which could be a Container.

Example

The Composite composes objects into tree structures and lets clients treat individual objects
and compositions uniformly. Although the example is abstract, arithmetic expressions are
Composites. An arithmetic expression consists of an operand, an operator (+ - * /), and
another operand. The operand can be a number, or another arithmetic expresssion. Thus, 2
+3and (2 +3) + (4 * 6) are both valid expressions.

Client «interface»

=, Shape

+display(in x1, in y1, in x2, in y2)

P
«adaptee»
Rectangle LegacyRectangle
+display(in x1, in y1, in x2, in y2) +display(in x1, in y1, inw, in h)
Delegate and map to adaptee.
Check list
1. Ensure that your problem is about representing "whole-part" hierarchical
relationships.

2. Consider the heuristic, "Containers that contain containees, each of which could be a
container." For example, "Assemblies that contain components, each of which could
be an assembly." Divide your domain concepts into container classes, and containee
classes.

3. Create a "lowest common denominator" interface that makes your containers and
containees interchangeable. It should specify the behavior that needs to be
exercised uniformly across all containee and container objects.

All container and containee classes declare an "is a" relationship to the interface.
All container classes declare a one-to-many "has a" relationship to the interface.

Container classes leverage polymorphism to delegate to their containee objects.

= & o

Child management methods [e.g. addChild(), removeChild()] should normally be
defined in the Composite class. Unfortunately, the desire to treat Leaf and Composite
objects uniformly may require that these methods be promoted to the abstract
Component class. See the Gang of Four for a discussion of these "safety" versus
"transparency" trade-offs.

Rules of thumb

. Composite and Decorator have similar structure diagrams, reflecting the fact that
both rely on recursive composition to organize an open-ended number of objects.

. Composite can be traversed with Iterator. Visitor can apply an operation over a
Composite. Composite could use Chain of Responsibility to let components access
global properties through their parent. It could also use Decorator to override these

properties on parts of the composition. It could use Observer to tie one object structure to
another and State to let a component change its behavior as its state changes.

. Composite can let you compose a Mediator out of smaller pieces through
recursive composition.

. Decorator is designed to let you add responsibilities to objects without subclassing.
Composite's focus is not on embellishment but on representation. These intents are
distinct but complementary. Consequently, Composite and Decorator are often used
in concert.

. Flyweight is often combined with Composite to implement shared leaf nodes.

Opinions
The whole point of the Composite pattern is that the Composite can be treated atomically,
just like a leaf. If you want to provide an Iterator protocol, fine, but I think that is outside the

pattern itself. At the heart of this pattern is the ability for a client to perform operations on
an object without needing to know that there are many objects inside.

Being able to treat a heterogeneous collection of objects atomically (or transparently)
requires that the "child management" interface be defined at the root of the Composite class
hierarchy (the abstract Component class). However, this choice costs you safety, because
clients may try to do meaningless things like add and remove objects from leaf objects. On
the other hand, if you "design for safety", the child management interface is declared in the
Composite class, and you lose transparency because leaves and Composites now have
different interfaces.

Smalltalk implementations of the Composite pattern usually do not have the interface for
managing the components in the Component interface, but in the Composite interface. C++
implementations tend to put it in the Component interface. This is an extremely interesting
fact, and one that I often ponder. I can offer theories to explain it, but nobody knows for
sure why it is true.

My Component classes do not know that Composites exist. They provide no help for
navigating Composites, nor any help for altering the contents of a Composite. This is
because I would like the base class (and all its derivatives) to be reusable in contexts that do
not require Composites. When given a base class pointer, if | absolutely need to know
whether or not it is a Composite, I will use dynamic_cast to figure this out. In those cases
where dynamic_cast is too expensive, I will use a Visitor.

Common complaint: "if I push the Composite interface down into the Composite class, how
am | going to enumerate (i.e. traverse) a complex structure?" My answer is that when I have
behaviors which apply to hierarchies like the one presented in the Composite pattern, I
typically use Visitor, so enumeration isn't a problem - the Visitor knows in each case, exactly
what kind of object it's dealing with. The Visitor doesn't need every object to provide an
enumeration interface.

Composite doesn't force you to treat all Components as Composites. It merely tells you to

put all operations that you want to treat "uniformly” in the Component class. If add, remove,
and similar operations cannot, or must not, be treated uniformly, then do not put them in the
Component base class. Remember, by the way, that each pattern's structure diagram doesn't
define the pattern; it merely depicts what in our experience is a common realization thereof.

Structural Pattern Part-11

Decorator Design Pattern

Intent

. Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality.

. Client-specified embellishment of a core object by recursively wrapping it.

. Wrapping a gift, putting it in a box, and wrapping the box.

Problem

You want to add behavior or state to individual objects at run-time. Inheritance is not
feasible because it is static and applies to an entire class.

Discussion

Suppose you are working on a user interface toolkit and you wish to support adding borders
and scroll bars to windows. You could define an inheritance hierarchy like ...

Window

+draw()
N

[

Window With_Vertical_Scrollbar Window_ With_Border

LS

L

Window_With_Horizontal_Scrollbar
P

Window_With_Vertical_and_Horizontal_Scrollbar

AN

Window_ With_Vertical_and_Horizontal_Scrollbar_and_Border

But the Decorator pattern suggests giving the client the ability to specify
whatever combination of "features" is desired.

Widget* aWidget = new BorderDecorator(

new HorizontalScrollBarDecorator(

new VerticalScrollBarDecorator(
‘ new Window(80, 24)))):
aWidget->draw():

| This flexibility can be achieved with the following design

| Window

+draw()

[1
| Window_With_Vertical_Scrollbar Window_ With_Border

| Pt P

Window_With_Horizontal_Scrollbar
LN

Window_With_Vertical _and_Horizontal Scrolibar
AN

Window_With_Vertical_and_Horizontal_Scrolibar_and_Border

Another example of cascading (or chaining) features together to produce a custom
object might look like ...

o Stream* aStream = new CompressingStream(
new ASCII7Stream(
new FileStream("fileName.dat")));
aStream->putString("Hello world");

The solution to this class of problems involves encapsulating the original object inside an
abstract wrapper interface. Both the decorator objects and the core object inherit from this
abstract interface. The interface uses recursive composition to allow an unlimited number of
decorator "layers" to be added to each core object.

Note that this pattern allows responsibilities to be added to an object, not methods to an
object's interface. The interface presented to the client must remain constant as
successive layers are specified.

Also note that the core object's identity has now been "hidden" inside of a decorator object.
Trying to access the core object directly is now a problem.

Structure

The client is always interested in CoreFunctionality.doThis(). The client may, or may not,
be interested in OptionalOne.doThis() and Optional Two.doThis(). Each of these classes
always delegate to the Decorator base class, and that class always delegates to the contained

"wrappee" object.

Window

+draw()

A

1

Window_With_Vertical_Scrollbar Window_With_Border

LN

N

Window_With_Horizontal_Scrollbar
25

Window_With_Vertical_and_Horizontal_Scrolibar

Example

AN

Window_With_Vertical_and_Horizontal_Scrolibar_and_Border

The Decorator attaches additional responsibilities to an object dynamically. The ornaments
that are added to pine or fir trees are examples of Decorators. Lights, garland, candy canes,
glass ornaments, etc., can be added to a tree to give it a festive look. The ornaments do not
change the tree itself which is recognizable as a Christmas tree regardless of particular
ornaments used. As an example of additional functionality. the addition of lights allows one
to "light up" a Christmas tree.

Another example: assault gun is a deadly weapon on it's own. But you can apply
certain "decorations" to make it more accurate, silent and devastating.

Window

| +draw()
e
[1
Window_With_Vertical_Scrollbar ' Window_With_Border
AN PN
Window_With_Horizontal_Scrolibar
PN
o Window With_Vertical and_Horizontal Scrollbar

LN

Window_With_Vertical_and_Horizontal_Scrolibar_and_Border

Check list

1. Ensure the context is: a single core (or non-optional) component, several
optional embellishments or wrappers, and an interface that is common to all.

2. Create a "Lowest Common Denominator" interface that makes all
classes interchangeable.

(S]

Create a second level base class (Decorator) to support the optional wrapper classes.

The Core class and Decorator class inherit from the LCD interface.

)

5. The Decorator class declares a composition relationship to the LCD interface, and
this data member is initialized in its constructor.

o

The Decorator class delegates to the LCD object.
7. Define a Decorator derived class for each optional embellishment.

8. Decorator derived classes implement their wrapper functionality - and - delegate
to the Decorator base class.

9. The client configures the type and ordering of Core and Decorator objects.

Rules of thumb

. Adapter provides a different interface to its subject. Proxy provides the
same interface. Decorator provides an enhanced interface.

Adapter changes an object's interface, Decorator enhances an object's
responsibilities. Decorator is thus more transparent to the client. As a consequence,
Decorator supports recursive composition, which isn't possible with pure Adapters.

. Composite and Decorator have similar structure diagrams, reflecting the fact that
both rely on recursive composition to organize an open-ended number of objects.

. A Decorator can be viewed as a degenerate Composite with only one
component. However, a Decorator adds additional responsibilities - it isn't intended
for object aggregation.

. Decorator is designed to let you add responsibilities to objects without subclassing.
Composite's focus is not on embellishment but on representation. These intents are
distinct but complementary. Consequently, Composite and Decorator are often used
in concert.

. Composite could use Chain of Responsibility to let components access global
properties through their parent. It could also use Decorator to override these
properties on parts of the composition.

° Decorator and Proxy have different purposes but similar structures. Both describe
how to provide a level of indirection to another object, and the implementations keep a
reference to the object to which they forward requests.

Decorator lets you change the skin of an object. Strategy lets you change the guts.

Facade Design Pattern:-

Intent

. Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use.

. Wrap a complicated subsystem with a simpler interface.

Problem
A segment of the client community needs a simplified interface to the overall functionality
of a complex subsystem.

Discussion

Facade discusses encapsulating a complex subsystem within a single interface object. This
reduces the learning curve necessary to successfully leverage the subsystem. It also
promotes decoupling the subsystem from its potentially many clients. On the other hand, if
the Facade is the only access point for the subsystem, it will limit the features and flexibility
that "power users" may need.

The Facade object should be a fairly simple advocate or facilitator. It should not become
an all-knowing oracle or "god" object.

Structure

Facade takes a "riddle wrapped in an enigma shrouded in mystery". and interjects a wrapper
that tames the amorphous and inscrutable mass of software.

Window
+draw()
AN
[|
Window_With_Vertical_Scrollbar Window_With_Border
AN AN

Window_With_Horizontal Scrollbar
AN

Window_With_Vertical_and_Horizontal_Scrollbar
2N

Window_With_Vertical_and_Horizontal_Scrollbar_and_Border

SubsystemOne and SubsystemThree do not interact with the internal components of
SubsystemTwo. They use the SubsystemTwoWrapper "facade" (i.e. the higher level
abstraction).

Window

+draw()

|

Window_With_Vertical_Scrolibar Window_With_Border

i

L5

Window_With_Horizontal_Scrollbar
Y

Window_With_Vertical_and_Horizontal_Scrollbar

Example

AN

Window_With_Vertical_and_Horizontal_Scrollbar_and_Border

The Facade defines a unified, higher level interface to a subsystem that makes it easier to use.
Consumers encounter a Facade when ordering from a catalog. The consumer calls one
number and speaks with a customer service representative. The customer service
representative acts as a Facade, providing an interface to the order fulfillment department, the
billing department, and the shipping department.

Window

+draw()

[

1

Window_With_Vertical_Scrolibar

Window_With_Border

Lo

LN

Window_ With_Horizontal_Scrollbar
N

Window_ With_Vertical_and_Horizontal_Scrollbar

Check list

1.

L

-

Lo

Window_With_Vertical_and_Horizontal_Scrolibar_and_Border

Identify a simpler, unified interface for the subsystem or component.

Design a 'wrapper' class that encapsulates the subsystem.

The facade/wrapper captures the complexity and collaborations of the component,
and delegates to the appropriate methods.

The client uses (is coupled to) the Facade only.

Consider whether additional Facades would add value.

Rules of thumb

Facade defines a new interface, whereas Adapter uses an old interface.
Remember that Adapter makes two existing interfaces work together as opposed to
defining an entirely new one.

Whereas Flyweight shows how to make lots of little objects, Facade shows how
to make a single object represent an entire subsystem.

Mediator is similar to Facade in that it abstracts functionality of existing classes.
Mediator abstracts/centralizes arbitrary communications between colleague objects. It
routinely "adds value", and it is known/referenced by the colleague objects. In
contrast, Facade defines a simpler interface to a subsystem, it doesn't add new
functionality. and it is not known by the subsystem classes.

Abstract Factory can be used as an alternative to Facade to hide platform-

specific classes.

. Facade objects are often Singletons because only one Facade object is required.

. Adapter and Facade are both wrappers; but they are different kinds of wrappers. The
intent of Facade is to produce a simpler interface, and the intent of Adapter is to
design to an existing interface. While Facade routinely wraps multiple objects and
Adapter wraps a single object; Facade could front-end a single complex object and
Adapter could wrap several legacy objects.

Question: So the way to tell the difference between the Adapter pattern and the Facade
pattern is that the Adapter wraps one class and the Facade may represent many classes?

Answer: No! Remember, the Adapter pattern changes the interface of one or more classes
into one interface that a client is expecting. While most textbook examples show the adapter
adapting one class, you may need to adapt many classes to provide the interface a client is
coded to. Likewise, a Facade may provide a simplified interface to a single class with a
very complex interface. The difference between the two is not in terms of how many classes
they "wrap", it is in their intent.

Flyweight Design Pattern:-

Intent

. Use sharing to support large numbers of fine-grained objects efficiently.

. The Motif GUI strategy of replacing heavy-weight widgets with light-weight gadgets.

Problem

Designing objects down to the lowest levels of system "granularity" provides optimal
flexibility, but can be unacceptably expensive in terms of performance and memory usage.

Discussion

The Flyweight pattern describes how to share objects to allow their use at fine granularities
without prohibitive cost. Each "flyweight" object is divided into two pieces: the state-
dependent (extrinsic) part, and the state-independent (intrinsic) part. Intrinsic state is stored
(shared) in the Flyweight object. Extrinsic state is stored or computed by client objects.
and passed to the Flyweight when its operations are invoked.

An illustration of this approach would be Motif widgets that have been re-engineered as
light-weight gadgets. Whereas widgets are "intelligent" enough to stand on their own;
gadgets exist in a dependent relationship with their parent layout manager widget. Each
layout manager provides context-dependent event handling, real estate management, and
resource services to its flyweight gadgets, and each gadget is only responsible for context-
independent state and behavior.

Structure

Flyweights are stored in a Factory's repository. The client restrains herself from creating
Flyweights directly, and requests them from the Factory. Each Flyweight cannot stand on its

own. Any attributes that would make sharing impossible must be supplied by the client
whenever a request is made of the Flyweight. If the context lends itself to "economy of
scale" (i.e. the client can easily compute or look-up the necessary attributes), then the
Flyweight pattern offers appropriate leverage.

Window
| +draw()
AN
l 1
Window_With_Vertical _Scrollbar Window_With_Border
AN N\
(-
Window_With_Horizontal_Scrolibar
AN
Window_With_Vertical_and_Horizontal Scrollibar
AN
Window_With_Vertical_and_Horizontal_Scrollbar_and_Border
)

The Ant, Locust, and Cockroach classes can be "light-weight" because their instance-specific
state has been de-encapsulated, or externalized, and must be supplied by the client.

Window

+draw()

[

]

Window_With_Vertical Scrollbar Window_With_Border

LN

VAN

Window_With_Horizontal_Scrolibar

[’A

Window_With_Vertical_and_Horizontal Scrolibar

Example

AN

Window_with_Vertical_and_Horizorztal__ScrolIbar”and_Border

The Flyweight uses sharing to support large numbers of objects efficiently. Modern web
browsers use this technique to prevent loading same images twice. When browser loads a
web page, it traverse through all images on that page. Browser loads all new images from
Internet and places them the internal cache. For already loaded images, a flyweight object is
created, which has some unique data like position within the page, but everything else is
referenced to the cached one.

Window

+draw()

L5

I

Window_With_Vertical Scrollbar Window_With _Border

P

N

Window_With_Horizontal Scrollbar
N

Window_With_Vertical_and_Horizontal Scrolibar

Check list

AN

Window_With_Vertical_and_Horizontal_Scrollbar_and Border |

1. Ensure that object overhead is an issue needing attention, and, the client of the class
is able and willing to absorb responsibility realignment.

2. Divide the target class's state into: shareable (intrinsic) state, and non-
shareable (extrinsic) state.

3. Remove the non-shareable state from the class attributes, and add it the calling
argument list of affected methods.

o A de

Create a Factory that can cache and reuse existing class instances.
The client must use the Factory instead of the new operator to request objects.

The client (or a third party) must look-up or compute the non-shareable state,

and supply that state to class methods.

Rules of thumb

. Whereas Flyweight shows how to make lots of little objects. Facade shows how
to make a single object represent an entire subsystem.

. Flyweight is often combined with Composite to implement shared leaf nodes.

. Terminal symbols within Interpreter's abstract syntax tree can be shared
with Flyweight.

. Flyweight explains when and how State objects can be shared.

Proxy Design Pattern:-

Intent
. Provide a surrogate or placeholder for another object to control access to it.
. Use an extra level of indirection to support distributed, controlled, or

intelligent access.

. Add a wrapper and delegation to protect the real component from undue complexity.

Problem

You need to support resource-hungry objects, and you do not want to instantiate such objects
unless and until they are actually requested by the client.

Discussion

Design a surrogate, or proxy, object that: instantiates the real object the first time the
client makes a request of the proxy, remembers the identity of this real object, and
forwards the instigating request to this real object. Then all subsequent requests are simply
forwarded directly to the encapsulated real object.

There are four common situations in which the Proxy pattern is applicable.

1. A virtual proxy is a placeholder for "expensive to create" objects. The real object
is only created when a client first requests/accesses the object.

2. Aremote proxy provides a local representative for an object that resides in a
different address space. This is what the "stub" code in RPC and CORBA provides.

3. Aprotective proxy controls access to a sensitive master object. The "surrogate"
object checks that the caller has the access permissions required prior to forwarding the
request.

4. A smart proxy interposes additional actions when an object is accessed. Typical
uses include:

o Counting the number of references to the real object so that it can be
freed automatically when there are no more references (aka smart pointer),

o Loading a persistent object into memory when it's first referenced.

o Checking that the real object is locked before it is accessed to ensure that

no other object can change it.

Structure

By defining a Subject interface, the presence of the Proxy object standing in place of
the RealSubject is transparent to the client.

Window

+draw()
i
[1
Window_With_Vertical_Scrollbar Window_With_Border
AN AN

Window_With_Horizontal_Scrolibar

T

Window_With_Vertical and_Horizontal Scrolibar
N

Window_With_Vertical_and_Horizontal_Scrollbar_and_Border

Example

The Proxy provides a surrogate or place holder to provide access to an object. A check or
bank draft is a proxy for funds in an account. A check can be used in place of cash for
PN making purchases and ultimately controls access to cash in the issuer's account.

Window

+draw()

25
I |

Window_With_Vertical_Scrollbar | Window_With_Border

LX LX

Window_With_Horizontal_Scrollbar
AN

Window_With_Vertical_and_Horizontal_Scrollbar
AN

Window_With_Vertical_and_Horizontal_Scrollbar_and Border

Check list
1. Identify the leverage or "aspect" that is best implemented as a wrapper or surrogate.

2. Define an interface that will make the proxy and the original
component interchangeable.

3. Consider defining a Factory that can encapsulate the decision of whether a proxy
or original object is desirable.

e

The wrapper class holds a pointer to the real class and implements the interface.

D

The pointer may be initialized at construction, or on first use.

6. Each wrapper method contributes its leverage, and delegates to the wrappee object.

Rules of thumb

. Adapter provides a different interface to its subject. Proxy provides the
same interface. Decorator provides an enhanced interface.

. Decorator and Proxy have different purposes but similar structures. Both describe
how to provide a level of indirection to another object, and the implementations keep a
reference to the object to which they forward requests.

UNIT-1V

Behavioral Patterns

Behavioural Patterns Part-I : Chain of Responsibility, Command, Interpreter, Iterator.

Behavioral Patterns (1)

* Deal with the way objects interact and distribute responsibility.

* Chain of Responsibility: Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request. Chain the receiving.

objects an dpass the request along the chain until an object handles it.

* Command: Encapsulate a request as an object, thereby letting you paramaterize clients
with different requests, queue or log requests, and support undoable operations.

* Interpreter: Given a language, define a representation for its grammar along with
an interpreter that uses the representation to interpret sentences in the language.

Chain of Responsibility:

Decouple sender of a request from receiver.
Give more than one object a chance to handle.
Flexibility in assigning responsibility.

Often applied with Composite.

+ —-l SUuccessor
Client K >——{ Handler

Contextinterface() handleRequest()

/N

ConcreteHandlerl | | ConcreteHandler2
handleRequest() handleRequest()

Chain of Responsibility (2)

+ Example: handling events in a graphical hierarchy

If interactor I= null

| interactor.handle(event,this)
| else

:| parent.handleEvent(event)

0.1 0.* _ - 0.*
Interactor Figure |

handle(Event,Figure) handleEvent(Event) {:)

children

7N
/ X
F 4

Co”mpositeFigure}fi’;‘,‘w parent

Command:Encapsulating Control Flow :
Name: Command design pattern

Problem description:

Encapsulates requests so that they can be executed, undone, or queued independently
of the request.

Solution:

A Command abstract class declares the interface supported by all
ConcreteCommands. ConcreteCommands encapsulate a service to be applied to a Receiver.
The Client creates ConcreteCommands and binds them to specific Receivers. The Invoker
actually executes a command.

Command: Class Diagram

mnvokes ny T
Invoker i Command

execute()

ConcreteCommandl

<<binds>> ‘
! execute()

ConcreteCommand?2

execute()
Command: Class Diagram for Match
imnvokes N fns
Match S Move
plav()
replay()

I

GamelNove

play()

<<binds>> replﬂ}'()

..........................

GameBoard

GamelNMove

plav()
replay()

Command: Consequences
Consequences:

The object of the command (Receiver) and the algorithm of the command.
(ConcreteCommand) are decoupled.

Invoker is shielded from specific commands.
ConcreteCommands are objects. They can be created and stored.
New ConcreteCommands can be added without changing existing code.
Command:
* You have commands that need to be
— executed,
— undone, or
— queued
* Command design pattern separates
— Receiver from Invoker from Commands

* All commands derive from Command and implement do(), undo(), and redo().

Command Design Pattern :

User Interaction User Interaction User Interaction

-l

Command Command Command

% Invokes * Invokes / Invokes

Command
Handler [T

] W
¢« Receives ¢t Receives = Receives

Action Action Action

* Separates command invoker and receiver.

Pattern: Interpreter:
* Intent: Given a language, interpret sentences.
* Participants: Expressions, Context, Client.
* Implementation: A class for each expression type

An Interpret method on each class
A class and object to store the global state (context)

* No support for the parsing process
(Assumes strings have been parsed into exp trees)

Pattern: Interpreter with Macros:
* Example: Definite Clause Grammars.
* A language for writing parsers/interpreters.

* Macros make it look like (almost) standard BNF.
Command(move(D)) -> “go”, Direction(D).

* Built-in to Prolog; easy to implement in Dylan, Lisp.

* Does parsing as well as interpretation.

Builds tree structure only as needed.
(Or, can automatically build complete trees)

May or may not use expression classes.

Method Combination:

Build a method from components in different classes
Primary methods: the “normal” methods; choose the most specific one

Before/After methods: guaranteed to run;
No possibility of forgetting to call super
Can be used to implement Active Value pattern

Around methods: wrap around everything;
Used to add tracing information, etc.

Is added complexity worth it?
Common Lisp: Yes; Most languages: No

Iterator pattern :

iterator: an object that provides a standard way to examine all elements of
any collection.

uniform interface for traversing many different data structures without exposing
their implementations.

supports concurrent iteration and element removal.

removes need to know about internal structure of collection or different methods
to access data from different collections.

Pattern: Iterator

objects that traverse collections

Collection

Iterator interfaces in Java:
public interface java.util.Iterator {
public boolean hasNext();
public Object next();
public void remove();
H
public interface java.util.Collection {
. // List, Set extend Collection
public Iterator iterator();

b

public interface java.util.Map {
public Set keySet(); // keys,values are Collections public

Collection values(); // (can call iterator() on them)

}

Iterators in Java:

+ all Java collections have a method iterator that returns an iterator for the elements
of the collection.

* can be used to look through the elements of any kind of collection (an alternative
to for loop).

List list = new ArrayList();

... add some elements ...

for (Iterator itr = list.iterator(); itr.hasNext()) {
BankAccount ba = (BankAccount)itr.next();

System.out.println(ba);

}

Adding your own Iterators :
* when implementing your own collections, it can be very convenient to use Iterators
— discouraged (has nonstandard interface):
public class PlayerList {
public int getNumPlayers() { ... }
public boolean empty() { ... } public
Player getPlayer(int n) { ... }

}

— preferred:
ublic class PlayerList
. p y {
public Iterator iterator() {... }
public int size() { ... }
public boolean isEmpty() { ... }
}
zinterfaces :
DvdListlterator DvdList
I
Innerlterator
™

Command:Encapsulating Control Flow:
Name: Command design pattern
Problem description:

Encapsulates requests so that they can be executed, undone, or queued independently
of the request.

Solution:

A Command abstract class declares the interface supported by all
ConcreteCommands. ConcreteCommands encapsulate a service to be applied to a Receiver.
The Client creates ConcreteCommands and binds them to specific Receivers. The Invoker
actually executes a command.

Command: Class Diagram

Invoker

mvokes

Recerver

Command

execute()

ConcreteCommandl

<<binds>>

execute()

ConcreteCommand?

execute()

Command: Class Diagram for Match

Match

mvokes

GameBoard

e .\ [O'\'(:’

play()

replay()

GamelMNove

< binds -~

.....................

play()
replay()

GamelNMNove

play()
replay()

Command: Consequences

Consequences:

The object of the command (Receiver) and the algorithm of the

command (ConcreteCommand) are decoupled.

Invoker is shielded from specific commands.
ConcreteCommands are objects. They can be created and stored.

New ConcreteCommands can be added without changing existing code.

Intent: Given a language, interpret sentences
Participants: Expressions, Context, Client

Implementation: A class for each expression
type An Interpret method on each class
A class and object to store the global state (context)

No support for the parsing process
(Assumes strings have been parsed into exp trees)

Pattern: Interpreter with Macros

Example: Definite Clause Grammars
A language for writing parsers/interpreters

Macros make it look like (almost) standard BNF
Command(move(D)) -> “go”, Direction(D).

Built-in to Prolog; easy to implement in Dylan, Lisp
Does parsing as well as interpretation.

Builds tree structure only as needed.
(Or, can automatically build complete trees)

May or may not use expression classes.

Method Combination:

Build a method from components in different classes
Primary methods: the “normal™ methods; choose the most specific one

Before/After methods: guaranteed to run;
No possibility of forgetting to call super
Can be used to implement Active Value pattern

Around methods: wrap around everything;
Used to add tracing information, etc.

Is added complexity worth it?
Common Lisp: Yes; Most languages: No

Behavioural Patterns Part-I1

Part-I1 : Mediator, Memento, Observer

Behavioral Patterns (1):
* Deal with the way objects interact and distribute responsibility

» Chain of Responsibility: Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain the receiving objects an dpass the
request along the chain until an object handles it.

» Command: Encapsulate a request as an object, thereby letting you paramaterize clients
with different requests, queue or log requests, and support undoable operations.

* Interpreter: Given a language, define a representation for its grammar along with
an interpreter that uses the representation to interpret sentences in the language.

Behavioral Patterns (2):

Iterator: Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.

* Mediator: Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other explicitly,

and lets you vary their interaction independently.

* Memento: Without violating encapsulation, capture and externalize an object’s internal state
so that the object can be restored to this state later.

» Observer: Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Behavioral Patterns (3)

» State: Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class.

» Strategy: Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that use it.

* Template Method: Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasseses redefine certain steps of an algorithm
without changing the algorithm’s structure.

» Visitor: Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements on which
it operates.

The Mediator Pattern:

» The Mediator pattern reduces coupling and simplifies code when several objects
must negotiate a complex interaction.

« Classes interact only with a mediator class rather than with each other.
+ Classes are coupled only to the mediator where interaction control code resides.
* Mediator is like a multi-way Fagade pattern.

Analogy: a meeting scheduler.

Unmediated
Collaboration
collaboratorB
I: OPV wmﬂ()
2: op2()
—_
collaboratorA collaboratorC
3: om % op3()
collaboratorD
Mediated

collaboratorB

Collaboration

1.1: opl()
1.5: op2()
1: op() 1.2: op2()
collaboratorA]i mediator __]l___._(‘callaboratorc
| 1.3: 0p3()
IY 1.4: op4()

collaboratorD

Mediator Pattern Structure:

l¢

Mediator | Collaborator

FAN

> ColleagueA

> ColleagueB

> ColleagueC

Mediator as a Broker:

——D Collaborator Q

h
«clienty P «broker» .| «supplier»
ColleagueA Mediator “| ColleagueB
«supplier»
“| ColleagueC

Mediator Behavior:

sd requestService () J

self:Mediator '(‘q]_l_ea,gu_eA‘__;Co.LlﬁaguﬁB_ _:CQ.F.ﬂagu.f‘.C_cnnqult 0

>f[] |
consult () |

I >
not!fy()
r consult () i
i J

b4
B

When to Use a Mediator:

« Use the Mediator pattern when a complex interaction between collaborators must be
encapsulated to

— Decouple collaborators,
— Centralize control of an interaction, and
— Simplify the collaborators.

» Using a mediator may compromise performance.

Mediators, Facades, and Control Styles:
« The Fagade and Mediator patterns provide means to make control more centralized.

» The Fagade and Mediator patterns should be used to move from a dispersed to a
delegated style, but not from a delegated to a centralized style.

Summary :

» Broker patterns use a Broker class to facilitate the interaction between a Client and a
Supplier.

» The Fagade pattern uses a broker (the facade) to provide a simplified interface to a
complex sub-system.

« The Mediator pattern uses a broker to encapsulate and control a complex interaction
among several suppliers.

Memento Pattern

Intent:
» Capture and externalize an object’s state without violating encapsulation.
* Restore the object’s state at some later time.

— Useful when implementing checkpoints and undo mechanisms that let users
back out of tentative operations or recover from errors.

— Entrusts other objects with the information it needs to revert to a previous state
without exposing its internal structure and representations.

Forces:

» Application needs to capture states at certain times or at user discretion. May be used
for:

— Undue / redo
— Log errors or events
— Backtracking
» Need to preserve encapsulation
— Don’t share knowledge of state with other objects

« Object owning state may not know when to take state snapshot.

Motivation:

* Many technical processes involve the exploration of some complex data
structure.

+ Often we need to backtrack when a particular path proves unproductive.

Examples are graph algorithms, searching knowledge bases, and
text navigation.

Memento stores a snapshot of another object’s internal state, exposure of which would
violate encapsulation and compromise the application’s reliability and extensibility.

A graphical editor may encapsulate the connectivity relationships between objects in a class,
whose public interface might be insufficient to allow precise reversal of a move operation.

Undo

Move

Memento pattern solves this problem as follows:

* The editor requests a memento from the object before executing move operation.
+ Originator creates and returns a memento.
* During undo operation, the editor gives the memento back to the originator.

 Based on the information in the memento, the originator restores itself to its previous
state.

Applicability:
* Use the Memento pattern when:

— A snapshot of an object’s state must be saved so that it can be restored later,
and direct access to the state would expose implementation details and
break encapsulation.

Structure:

Originator

Attribute:
state

Operation:

SetMemento(Memento m)
CreateMemento() Q 1

1
]
1
1
1
1
-

s

state = m->GetState()

return new Memento(state)

| E——

Participants:

Memento

Memento

Attribute:
state

caretaker

Operation:
GetState()
SetState()

— Stores internal state of the Originator object. Originator decides how much.

— Protects against access by objects other than the originator.

— Mementos have two interfaces:

Originator

— Creates a memento containing a snapshot of its current internal state.

Caretaker sees a narrow interface.

Originator sees a wide interface.

— Uses the memento to restore its internal state.

- ———CreateMemento() ———»

Caretaker:
» Isresponsible for the memento’s safekeeping.

* Never operates on or examines the contents of a memento.

Event Trace:

aCaretaker anOriginator aMemento

]] i

coonew Memento:

SetState()—————»

SetMemento(aMemento) ——»

GetState()————»

Collaborations:

* A caretaker requests a memento from an originator, holds it for a time, and passes it
back to the originator.

* Mementos are passive. Only the originator that created a memento will assign or
retrieve its state.

Consequences:
Memento has several consequences:

— Memento avoids exposing information that only an originator should manage,
but for simplicity should be stored outside the originator.

— Having clients manage the state they ask for simplifies the originator.

« Using mementos may be expensive, due to copying of large amounts of state or
frequent creation of mementos.

* A caretaker is responsible for deleting the mementos it cares for.

A caretaker may incur large storage costs when it stores mementos.

Implementation:

When mementos get created and passed back to their originator in a predictable sequence,
then Memento can save just incremental changes to originator’s state.

Known Uses:

Memento is a 2000 film about Leonard Shelby and his quest to revenge the brutal murder of
his wife. Though Leonard is hampered with short-term memory loss, he uses notes and
tatoos to compile the information into a suspect.

Known Use of Pattern
* Dylan language uses memento to provide iterators for its collection facility.
— Dylan is a dynamic object oriented language using the functional style.

— Development started by Apple, but subsequently moved to open source.

Related Patterns
*» Command
Commands can use mementos to maintain state for undo mechanisms.
» [terator

Mementos can be used for iteration.

Observer Pattern

Define a one-to-many dependency, all the dependents are notified and updated
automatically

The interaction is known as publish-subseribe or subscribe-notify
Avoiding observer-specific update protocol: pull model vs. push model
Other consequences and open issues

Intent:

* Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically

Key forces:
» There may be many observers
» Each observer may react differently to the same notification

» The subject should be as decoupled as possible from the observers to allow
observers to change independently of the subject

Observer

Many-to-one dependency between objects
Use when there are two or more views on the same “data”
aka “Publish and subscribe™ mechanism

Choice of “push” or “pull” notification styles

Subject
attach(Observer) Observer
detach(0b i
nztif;()(Osewer) | forall 0 in observers update()

/X 0.update() A

ConcreteSubject @ ConcreteObserver
getState() update() 0

[state=subject getState(); -

Observer: Encapsulating Control Flow
Name: Observer design pattern
Problem description:
Maintains consistency across state of one Subject and many Observers.
Solution:

A Subject has a primary function to maintain some state (e.g., a data structure). One
or more Observers use this state, which introduces redundancy between the states of
Subject and Observer.

Observer invokes the subscribe() method to synchronize the state. Whenever the state
changes, Subject invokes its notify() method to iteratively invoke each Observer.update()
method.

Observer: Class Diagram

Subject Observer
N
l I’
subscribe() update()
unsubscribe()
notifv()

F A3

!

i

ConcreteSubject

state

ConcreteObserver

observeState

getstate()
setstate()

update()

Observer: Consequences

Consequences:

Decouples Subject, which maintains state, from Observers, who make use of the state.

Can result in many spurious broadcasts when the state of Subject changes.

™ Collaborations in Observer Pattern

S1: ConcreteSubject

setState()

obs1 : ConcreteQObserver

> notify(

update()

getState()

S —

| update()

obs2 : ConcreteObserver

getState()

- —

Observer Pattern [1]}
» Need to separate presentational aspects with the data, i.e. separate views and data.
» Classes defining application data and presentation can be reused.

» Change in one view automatically reflected in other views. Also, change in
the application data is reflected in all views.

» Defines one-to-many dependency amongst objects so that when one object changes its
state, all its dependents are notified.

Relative Percentages
ABCD
X 15353515 '_\1
Y 10403020 |
Z 10 40 30 20 f

v

;\T—“:)”] a

B=40% .
_ ’ | C=30% " Application data
—— Change notitication e
- [)“‘*._“ Q
~ Requests, modifications
Subject Observer
attach (Obgerver) Update()

Notify () © x = Update(). }

detach (Observer) | . = : AW,
Forall x mobservers | [\y
| A

Concrete Observer
subject
Concrete SubjectL Update()
<
GetState() observerState i
setitate)) observerState= @
subjectState subject => getState().

Class collaboration in Observer

:ConcreteSubject ConcreteObserver-1 ConcreteObserver-2

SetState()

Notify()
; [

 Update()

GetState()

Update()

GetState()

Observer Pattern: Observer code

class Subject;

class observer { D

‘ Abstract class deting
public:

the Observer imntertace

virtual ~observer;

virtual void Update (Subject™ theChangedSubject)=0;

protected: \

observer (); .

Note the support for multiple subjects.

Observer Pattern: Subject Code

class Subject R S
jesty Abstract class defining

the Subject mtertace.

public:
virtual ~Subject;
virtual void Attach (observer®);
virtual void Detach (observer®) ;
virtual void Notify();

protected:
Subject ();

private:
List <Observer*> *_observers;

5

void Subject :: Attach (Observer® o){
_observers -> Append(o):

}

void Subject . Detach (Observer® o){

_observers -> Remove(o);

}
void Subject :: Notify (){

iter.Currentlitem() -> Update(this);

Observer Pattern: A Concrete Subject [1]

class ClockTimer : public Subject {

public:
ClockTimer();
virtual int GetHour();
virtual int GetMinutes():
virtual int GetSecond():
void Tick ():

}

ClockTimer :: Tick {

// Update internal time keeping state.

// q[ets called on regular intervals by an internal
imer.

Notify();

Observer Pattern: A Concrete Observer (1]

class DigitalClock: public Widget, public
putgfiie?erver {

DigitalClock{ClockTimer?*):
virtual ~DigitalClock():

Override Observer operation.

virtual void Update(Subject®);

virtual void Draw(): .| Override Widget operation.

private:

ClockTimer* _subject:

}

DigitalClock ::DigitalClock (ClockTimer* s) {
_subject = s;

_subject—>Attach(this):

DigitalClock ::~DigitalClock() {

_subject->Detach(this):

void DigitalClock ::Update (subject* theChangedSubject) {
If (theChangedSubject == _subject) {

Draw(); \

} Checkif this is the clock’s subject.

void DigitalClock ::Draw () {

int hour = _subject->GetHour(),
int minute = _subject->GeMinute(); // etc.

/I Code for drawing the digital clock.
}

Observer Pattern: Main (skeleton)

ClockTimer* timer = new ClockTimer;

DigitalClock™ digitalClock = new DigitalClock (timer);

Observer Pattern: Consequences

» Abstract coupling between subject and observer. Subject has no knowledge of
concrete observer classes. (What design principle is used?)

*» Support for broadcast communication. A subject need not specify the receivers;
all interested objects receive the notification.

« Unexpected updates: Observers need not be concerned about when then updates are
to occur. They are not concerned about each other’s presence. In some cases this may
lead to unwanted updates.

When to use the Observer Pattern?

» When an abstraction has two aspects: one dependent on the other. Encapsulating these
aspects in separate objects allows one to vary and reuse them independently.

» When a change to one object requires changing others and the number of objects to be
changed is not known.

» When an object should be able to notify others without knowing who they are.
Avoid tight coupling between objects.

UNIT-V

Behavioral Patterns

Behavioural Patterns Part-II(cont’d) : State, Strategy, Template Method, Visitor, Discussion
of Behavioural Patterns.

General Description

» A type of Behavioral pattern.

» Allows an object to alter its behavior when its internal state changes. The object
will appear to change its class.

* Uses Polymorphism to define different behaviors for different states of an object.

When to use STATE pattern ?

» State pattern is useful when there is an object that can be in one of several states, with
different behavior in each state.

» To simplify operations that have large conditional statements that depend on the
object’s state.

if (myself = happy) then

{
eatlceCream();
/
else if (myself = sad) then
{
goToPub();
/

else if (myself = ecstatic) then
{

Example I

water StateOfWater
state variable <> * increaseTemp()
|inersasaTemp0 decreaseTemp()
decreaseTemp() Pl &
WaterVapor LiquidWater Ice
Client increaseTemp() increaseTemp() increaseTemp()
increaseTemp() decreaseTemp() decreaseTemp() decreaseTemp()

How is STATE pattern implemented ?
» “Context” class:
Represents the interface to the outside world.
» “State” abstract class:
Base class which defines the different states of the “state machine”.
» “Derived” classes from the State class:
Defines the true nature of the state that the state machine can be in.

Context class maintains a pointer to the current state. To change the state of the state
machine, the pointer needs to be changed.

Example 11

MyMood MoodState

state variable

doSomething()

[\

s %
" SN Y

mad angry happy
Client .
doSomething() 4 z
%
doSomething() doSomething() doSomething()

Benefits of using STATE pattern
. Loc;lizes all behavior associated with a particular state into one object.

New state and transitions can be added easily by defining new subclasses.

Simplifies maintenance.

+ It makes state transitions explicit.

Separate objects for separate states makes transition explicit rather than using
internal data values to define transitions in one combined object.

State objects can be shared.

Context can share State objects if there are no instance variables.

Food for thought...
* To have a monolithic single class or many subclasses ?
Increases the number of classes and is less compact.
Avoids large conditional statements.

Where to define the state transitions ?

If criteria is fixed, transition can be defined in the context.

More flexible if transition is specified in the State subclass.

v

Introduces dependencies between subclasses.

Y

Whether to create State objects as and when required or to create-them-once-
and-use-many-times ?

Y

First is desirable if the context changes state infrequently.

Later is desirable if the context changes state frequently.

Pattern: Strategy

objects that hold alternate algorithms to solve a problem

Context

Contextinterface()

Strategy pattern

strateqy
> - | Stralegy
Algorithminterface(}
ConcreteStrategyA ConcreteStrateqyB ConcreteStrategyC

Algorithminterface()

Algorithmintartace()

Alganthminterfacel)

* pulling an algorithm out from the object that contains it, and encapsulating
the algorithm (the "strategy") as an object

* each strategy implements one behavior, one implementation of how to solve the

same problem

— how is this different from Command pattern?

» separates algorithm for behavior from object that wants to act

» allows changing an object's behavior dynamically without extending / changing

the object itself

* examples:

— file saving/compression

— layout managers on GUI containers

— Al algorithms for computer game players

Strategy example: Card player
/I Strategy hierarchy parent
// (an interface or abstract class)
public interface Strategy {
public Card getMove();
b
/] setting a strategy playerl.setStrategy(new
SmartStrategy());
// using a strategy

Card plmove = playerl.move(); // uses strategy

Strategy: Encapsulating Algorithms
Name: Strategy design pattern
Problem description:

Decouple a policy-deciding class from a set of mechanisms, so
that different mechanisms can be changed transparently.

Example:

A mobile computer can be used with a wireless network, or
connected to an Ethernet, with dynamic switching between networks based on location
and network costs.

Solution:
A Client accesses services provided by a Context.

The Context services are realized using one of several mechanisms, as decided by a Policy
object.

The abstract class Strategy describes the interface that is common to all mechanisms that
Context can use. Policy class creates a ConcreteStrategy object and configures Context to
use it.

Strategy Example: Class Diagram for Mobile Computer

Application

LocationNanager

¥ ¥

NetworkConnection

send()
setNetworkInterface()

NenvorkInterface

open()
close()
send()

—

1

Note the

iy _ Ethernet WirelessNet
similartties to
Bridge pattern open()
close()
send()
Strategy: Class Diagram
Client Policy
v v
Context .
k> Strategy

contextIntertace()

algorithmInterface()

ConcreteStrategyl

ConcreteStrategy?

Strategy: Consequences

Consequences:

ConcreteStrategies can be substituted transparently from Context.

Policy decides which Strategy is best, given the current circumstances.

New policy algorithms can be added without modifying Context or Client.

Strategy

* You want to

— use different algorithms depending upon the context

— avoid having to change the context or client

* Strategy

— decouples interface from implementation

— shields client from implementations

— Context is not aware which strategy is being used; Client configures the

Context

— strategies can be substituted at runtime

— example: interface to wired and wireless networks

* Make algorithms interchangeable---"changing the guts”

» Alternative to subclassing

* Choice of implementation at run-time

» Increases run-time complexity

e

Contextinterface() Operation()

/\

ConcreteStrategy1

ConcreteStrategy?

Operation()

Operation()

Template Method
Conducted By Raghavendar Japala

Topics — Template Method
 Introduction to Template Method Design Pattern
» Structure of Template Method
* Generic Class and Concrete Class

» Plotter class and Plotter Function Class

Introduction

The DBAnimationApplet illustrates the use of an abstract class that serves as a template for
classes with shared functionality.

An abstract class contains behavior that is common to all its subclasses. This behavior is
encapsulated in nonabstract methods, which may even be declared final to prevent any
modification. This action ensures that all subclasses will inherit the same common
behavior and its implementation.

The abstract methods in such templates ensure the interface of the subclasses and require that
context specific behavior be implemented for each concrete subclass.

Hook Method and Template Method

The abstract method paintFrame() acts as a placeholder for the behavior that is implemented
differently for each specific context.

We call such methods, hook methods, upon which context specific behavior may be hung,
or implemented.

The paintFrame() hook is placed within the method update(), which is common to all
concrete animation applets. Methods containing hooks are called template methods.

Hook Method and Template Method (Con’t)

The abstract method paintFrame() represents the behavior that is changeable, and its
implementation is deferred to the concrete animation applets.

We call paintFrame() a hook method. Using the hook method, we are able to define the
update() method, which represents a behavior common to all the concrete animation applets.

Frozen Spots and Hot Spots
A template method uses hook methods to define a common behavior.

Template method describes the fixed behaviors of a generic class, which are
sometimes called frozen spots.

Hook methods indicate the changeable behaviors of a generic class, which are sometimes
called hot spots.

Hook Method and Template Method (Con’t)

The abstract method paintFrame() represents the behavior that is changeable, and
its implementation is deferred to the concrete animation applets.

We call paintFrame() a hook method. Using the hook method, we are able to define the
update() method, which represents a behavior common to all the concrete animation applets.

Structure of the Template Method Design Pattern

GenericClass
templateMethod() -~ hookMethod1()

hookMethod1() o
hookMethod2() hookNlethod?2()

- A—.

ConcreteClass
hookMethod1()
hookMethod2()

Structure of the Template Method Design Pattern (Con’t)

GenericClass (e.g., DBAnimationApplet), which defines abstract hook methods (e.g.,
paintFrame()) that concrete subclasses (e.g., Bouncing-Ball2) override to implement steps of
an algorithm and implements a template method (e.g., update()) that defines the skeleton of
an algorithm by calling the hook methods;

ConcreteClass (e.g., Bouncing-Ball2) which implements the hook methods (e.g.,
paintFrame()) to carry out subclass specific steps of the algorithm defined in the template
method.

Structure of the Template Method Design Pattern (Con’t)
In the Template Method design pattern, #ook methods do not have to be abstract.
The generic class may provide default implementations for the hook methods.

Thus the subclasses have the option of overriding the hook methods or using the default
implementation.

The initAnimator() method in DBAnimationApplet is a
nonabstract hook method with a default implementation.
The init() method is another template method.

A Generic Function Plotter

The generic plotter should factorize all the behavior related to drawing and leave only the
definition of the function to be plotted to its subclasses.

A concrete plotter PlotSine will be implemented to plot the function

y=8inx

UNIT-5 PART-II

What to Expect from Design Patterns, A Brief History, The Pattern
Community An Invitation, A Parting Thought.

What to Expect from Design Patterns?
* A Common Design Vocabulary.
* A Documentation and Learning Aid.
* An Adjunct to Existing Methods.

* A Target for Refactoring.

A common design vocabulary

1. Studies of expert programmers for conventional languages have shown that knowledge

- and experience isn’t organized simply around syntax but in larger conceptual structures such
as algorithms, data structures and idioms [AS85, Cop92, Cur89, SS886], and plans for
fulfilling a particular goal [SE84].

2. Designers probably don’t think about the notation they are using for recording
the designing as much as they try to match the current design situation against plans,
data structures, and idioms they have learned in the past.

3. Computer scientists name and catalog algorithms and data structures, but we don’t
often name other kinds of patterns. Design patterns provide a common vocabulary for
designers to use to communicate, document, and explore design alternatives.

A document and learning aid:
1. Knowing the design patterns makes it easier to understand existing systems.

2. Most large object-oriented systems use this design patterns people learning object-
oriented programming often complain that the systems they are working with use
inheritance in convoluted ways and that it is difficult to follow the flow of control.

3. Inlarge part this is because they do not understand the design patterns in the system
learning these design patterns will help you understand existing object-oriented system.

An adjacent to existing methods:

1.

Object-oriented design methods are supposed to promote good design, to teach new
designers how to design well, and standardize the way designs are developed.

A design method typically defines a set of notations (usually graphical) for modeling
various aspects of design along with a set of rules that govern how and when to use
each notation.

Design methods usually describe problems that occur in a design, how to resolve
them and how to evaluate design. But then have not been able to capture the
experience of expert designers.

A full fledged design method requires more kinds of patterns than just design
patterns there can also be analysis patterns, user interface design patterns, or
performance tuning patterns but the design patterns are an essential part, one that’s
been missing until now.

A target for refactoring:

L,

2.

One of the problems in developing reusable software is that it often has to
be recognized or refactored [0J90].

Design patterns help you determine how to recognize a design and they can reduce a
amount of refactoring need to later.

The life cycle of object-oriented software has several faces. Brain Foote identifies these
phases as the prototyping expansionary, and consolidating phases [Foo92].

Design Patterns Applied:

Example: An Hierarchical File System

Tree Structure — Composite

Patterns Overview

Symbolic Links — Proxy

Extending Functionality > Visitor

Single User Protection — Template Method
Multi User Protection — Singleton

User and Groups — Mediator

A Brief History of Design Patterns

* 1979--Christopher Alexander pens The Timeless Way of Building

— Building Towns for Dummies

— Had nothing to do with software

* 1994--Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (the Gang
of Four, or GoF) publish Design patterns: Elements of Reusable Object-Oriented
Software

— Capitalized on the work of Alexander

— The seminal publication on software design patterns.

What’s In a Design Pattern—1994

* The GOF book describes a pattern using the following four attributes:

The name to describes the pattern, its solutions and consequences in a word or
two

The problem describes when to apply the pattern

The solution describes the elements that make up the design,
their relationships, responsibilities, and collaborations

The consequences are the results and trade-offs in applying the pattern

* All examples in C++ and Smalltalk.

What’s In a Design Pattern — 2002

* Grand’s book is the latest offering in the field and is very Java centric. He develops
the GOF attributes to a greater granularity and adds the Java specifics

Pattern name—same as GOF attribute

Synopsis—conveys the essence of the solution
Context—problem the pattern addresses

Forces—reasons to, or not to use a solution

Solution—general purpose solution to the problem
Implementation—important considerations when using a solution
Consequences—implications, good or bad, of using a solution
Java API usage—examples from the core Java API

Code example—self explanatory

Related patterns—self explanatory

Grand’s Classifications of Design Pattern:

* Fundamental patterns
» Creational patterns

» Partitioning patterns
* Structural patterns

* Behavioral patterns

» Concurrency patterns

The Pattern Community An Invention

Christopher Alexander is the architect who first studied
Patterns in buildings and communities and developed
A PATTERN LANGUAGE for generating them.

His work has inspired time and again. So it’s fitting worth
while To compare our work to his.

Then we’ll look at other’s work in software-related patterns.

Alexander’s Pattern Languages
There are many ways in which our work is like Alexander's
Both are based on observing existing systems and looking for patterns in them.
Both have templates for describing patterns although
our templates are quite different)..
But there are just as many ways in which our work different.
People have been making buildings for thousands of years, and there are many
classic examples to draw upon. We have been making Software systems for a
Relatively short time, and few are considered classics.
Alexander gives an order in which his patterns should be used; we have not.

>
Alexander’s patterns emphasize the problems they adderss ,

> ; ; o .
where as design patterns describes the solutions in more detail.

¥ -
Alexander claims his patterns will generate complete buildings.

We do not claim that our patterns will generate complete programs.
When Alexander claims you can design a house simply applying his patterns one
after Another ,he has goals similar to those of object-oriented design methodologies

who Gives step-by-step rules for design,

In fact ,we think it’s unlikely that there will ever be a compete pattern language for
soft -ware.

But certainly possible to make one that is more complete.

A Parting Thought.

The best designs will use many design patterns that dovetail And intertwine to produce a
greater whole.

As Alexander says:

It is possible to make buildings by stringing together pattern’s,

In a rather loose way,

A building made like this , is an assembly of patterns. it is not Dense.
It is not profound. but it is also possible to put pattern’s together

In such a way that many patterns overlap in the same physical

Space: the building is very dense; it has many meaning captured

In a small space; and through this density, it becomes profound.

Power Point
Presentation

3/23/2018

Design Patterns

IV B.Tech.l Semester

Describe a recurring design structure
— Defines a common vocabulary
— Abstracts from concrete designs
— Identifies classes, collaborations, and responsibilities
— Describes applicability, trade-offs, and consequences

* Formats of pattern writers vary, but a pattern description usually

has at least these four things.
~ pattern name

— problem

~ solution

— Consequences

What Is a Design Pattern?

« Adesign pattern has 4 basic parts:
— 1.Name
— 2.Problem
- 3.Solution
— 4.Consequences and trade-offs of application
« Language- and implementation-independent
* A “micro-architecture”
*+ Adjunct to existing methodologies (Unified, OMT, etc.)
* No mechanical application
= The solution needs to be d into concrete terms in the
application context by the developer

Pattern Name

A handle used to describe:

— a design problem

— its solutions

— its consequences
* Increases design vocabulary
* Makes it possible to design at a higher level of

abstraction

* Enhances communication

* “The Hardest part of programming is coming up
with good variable [function, and type] names

Description of a Design Pattern

* Description of communicating objects and
classes that are customized to solve a general
design problem in a particular context.

* Language- & implementation-independent
* A “micro-architecture”

* Adjunct to existing methodologies (RUP,
Fusion, SCRUM, etc.)

Problem

Describes when to apply the pattern

Explains the problem and its context

May describe specific design problems and/or
object structures

May contain a list of preconditions that must
be met before it makes sense to apply the
pattern

-

3/23/2018

L]

Solution

Describes the elements that make up the
—design

- relationships

- responsibilities

- collaborations

Does not describe specific concrete
implementation

Abstract description of design problems and
how the pattern solves it

Design Pattern Template

* Collaboration:

—~ A description of how classes and objects used in the pattern interact with
each other.
Consequences:
— Adescription of the results, side effects, and trade offs caused by using
the pattern.
Implementation:
- Aggulptlon of an implementation of the pattern; the solution part of the
pattern.

Sample Code:

— Anillustration of how the pattern can be used in a programming language.
Known Uses:

— Examples of real usages of the pattern.
Related Patterns:

— Other patterns that have some relationship with the pattern; discussion of
the differences between the pattern and similar patterns

Consequences

Results and trade-offs of applying the pattern
Critical for:

— evaluating design alternatives

— understanding costs

— understanding benefits of applying the pattern
Includes the impacts of a pattern on a system’s:
— flexibility

— extensibility

— portability

Goals of Design Patterns

Codify good design
— Distil and disseminate experience
— Aid to novices and experts alike
— Abstract how to think about design
Give design structures explicit names
— Common vocabulary
— Reduced complexity
— Greater expressiveness
Capture and preserve design information
— Articulate design decisions succinctly
— Improve documentation
Facilitate restructuring/refactoring
— Patterns are interrelated
— Additional flexibility

Design Pattern Template

Pattern Name and Classification:
- A tﬂ‘:sc:dptl\r- and unique name that helps in identifying and referring to the
pattern.
Intent:
=~ Adescription of the goal behind the pattern and the reason for using it.
Also Known As:
= QOther names for the pattern.
Motivation (Forces):
— Ascenario consisting of a problem and a context in which this pattern can be used.
Applicablility:
~— Situations in which this pattern is usable; the context for the pattern,
Structure:
— Agraphical representation of the pattern. Class diagrams and Interaction diagrams
m!ygchuud l%nhls purpo:e‘ P ¥ lag;

Participants:
— Alisting of the classes and objects used in the pattern and their roles in the design.

Goals of Design Patterns

Design patterns can speed up the development
process by providing tested, proven development
paradigms.

Effective software design requires considering
issues that may not become visible until later in
the implementation.

Reusing design patterns helps to prevent subtle
issues that can cause major problems, and it also
improves code readability for coders and
architects who are familiar with the patterns.

!

Why Design Patterns?

Designing OO software is hard

Designing reusable 00 software — harder
Experienced OO designers make good design
New designers tend to fall back on non-00
techniques used before

Experienced designers know something -
what is it?

3/23/2018

OO0 Desgin

00D methods emphasize design notations

— Fine for specification, documentation

But 00D is more than just drawing diagrams
— Good draftsmen # good designers

Good 00 designers rely on lots of experience
— At least as important as syntax

Most powerful reuse is design reuse

— Match problem to design experience

Why Design Patterns?

Expert designers know not to solve every
problem from first principles.

They reuse solutions.

These patterns make OO designs more flexible,
elegant, and ultimately reusable.

Recurring OO Design Structures

* 00 systems exhibit recurring structures that promote
— abstraction
— flexibility
— modularity
— elegance

« find pertinent objects and factor them into classes at the right
granularity.

define class interfaces and inheritance hierarchies
Establish key relationship among classes.

Two Major Principles of Object-
Oriented Design
Program to an interface, not an
implementation.

Favor object compositions over class
inheritance.

00 Design is hard

* The design should be specific to the problem
at hand, but also general enough to address
future problems and requirements.

» Therein lies valuable design knowledge, the
problem is
— Capturing,

— Communicating,
— applying this knowledge

3/23/2018

Expert designers use patterns

When they find a good solution, they use it
again and again.

* The design patterns solve specific design

problems and make OO designs more flexible,
elegant, and ultimately reusable.

A designer who is familiar with patterns can
apply them immediately to design problems

Types of Patterns
* Creational Patterns * Behavioral Patterns
- ‘Ml:imr Factory — Chain of Responsibility
— Builder
= Command
— Factory Method ~ Interpreter
— Prototype
~ Singleton = Iterator
+ Structural Patterns ~ Mediator
~ Adapter — Memento
— Bridge — Observer
= Composite = State
— Decorator - Str.mgy
— Fagade
— Fiyweight — Template Method
= Prowy - Visitor

Why Study Design Patterns?

Can reuse solutions.
— Gives us a head start
— Avoids the unanticipated things later
— No need to reinvent the wheel
Establish common terminology
— Design patterns provide a common point of reference
— Easier to say, “We need some Strategies here.”
Provide a higher level prospective.
— Frees us from dealing with the details too early.

Design Space for Patterns

Purpose
Cr a% Beh
Method class] Tt
é Factory Adapter (class) e g
Abstract Factory object Chain of Responsibilil
m'() f':omm y
Singleton Decorator Modiator
g F:uhm Observer
Proxy gl-
Visitor

.

Types of Patterns

Creational patterns:

— Deal with initializing and configuring classes and
objects

Structural patterns:

— Deal with decoupling interface and implementation of
classes and objects

— Composition of classes or objects
Behavioral patterns:

— Deal with dynamic interactions among societies of
classes and objects

— How they distribute responsibility

Papers

> Semester End Question

Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By ALC.T.E,, New Delhi, Pormanently Affiliated to INTU, Hyderabad) Rl 5
{Aziz Nagar, C.B.Post, Hyderabad -500075)
Subject Code: A18543
B.Tech. IV Year II Semester Examinations - MAY 2019
SUBJECT :DESIGN PATTERNS BRANCH : CSE &IT
Time: 3 Hours Mazx. Marks:75
Note: This question paper contains two Paris A and B.
Part A is compulsory which carries 25 Marks. Answer all the questions.
Part B consists of 5 questions. Answer all the questions.
Bloom™S Level:
Remember L1 Analyze L4
Understand 12 Evaluate 3 L5
Apply 13 Create L6
| PART -A BL | 25M
ANSWER ALL THE QUESTIONS
1 |What is a design Pattern? 12 2M
2 |Explain Design Patterns in Small Talk MVC. L2 3M
3 |List different types of Creational Patterns. L3 2M
¢ | 4 [What s the intent of a Builder Pattern? L1 3M
== 5 |Write the motivation of Decorator Pattern? L4 2M
6 |Sketch the structure of Adaptor Pattern. L3 IM
7 |What are the known uses of Iterator Pattern? L1 2M
8 |Write benefits and drawbacks of Mediator Pattern. 12 3M
9 _|Write a short note on the history of Design Patterns. L2 2M
10 |Describe the patterns in a software. L1 M
PART-B
ANSWER ALL THE QUESTIONS gl S s
 11.i.a)| Write the general template used for describing the design patterns. 12 5M
b) [How to select a design pattern? Explain in detail, 14 SM
[OR]
ii.a) |Describe the formatting in Lexi's Design, [5M
b) |Explain the Spelling Checking and Hyphenation Design problem in detail. L1 SM
12.i.a)| What are the consequences of Builder pattern? Explain Builder Pattern implementationf 1.3 5M
b) [Why Singleton Pattern uses a special method to instantiate objects? Discuss. L2 SM
[OR]
Draw the structure of Abstract Factory pattern and list out its participants. 1.3 SM
Discuss about the implementation issues of Prototype Pattern. L3 SM
13.1.a) |[Explain the sample code of Flyweight Pattern. L5 5M
b) |Discuss about the participants of Adaptor Pattern and explain the functions of each. L2 M
[OR]
ii.a) |Write the motivation and Consequences of Facade Pattern. L3 M
b) _|{Explain about the intent,uses and related patterns of Decorator and Proxy. L2 5M
14.i.a) |Explain About motivation of Mediator Pattern. 13 5M
b) {What are the issues to be considered while applying Observer Pattern. L4 M
OR
ii.a) |What are the consequences of chain of responsi}[Jility]Pattern? Explain. 1.2 SM
b) [Write some of the benifits and liabilities of Visitor Pattern. L2 SM
15.i.2) Illustrfa.te Alexander’s Pattern Language. L3 SM
b) [Explain about target refactoring approach method. L2 SM
[OR]
ii.a) |Explain what to expect from Design Patterns. L4 5M
b) |What can you do if you are interested in Patterns? L4 M

VJIT(A)

Topics Covered Under Content beyond Syllabus (Gap Analysis):

Cloud Design Patterns

Centralized Remote Administration
How can diverse administrative tasks and controls be consolidated for central remote
access by cloud consumers?

Problem

Cloud consumers can end up having to manage a range of diverse cloud-based IT resources, each
with distinct administrative functions. The disparity in user-interfaces and reporting features can
make remote administration burdensome and prone to human error.

Solution

The cloud provider can consolidate diverse management features for different IT resources into a
single, custom portal that standardizes administrative controls as well as providing cross-IT
resource reporting features.

Application

A usage and administration portal is developed by the cloud provider to interface with systems
and APIs offered by back-end products, IT resources and mechanisms, and to further support
different levels of access based on pre-assigned permissions.

Mechanisms

Audit Monitor, Billing Management System, Cloud Usage Monitor, Logical Network
Perimeter, Multi-Device Broker, Pay-Per-Use Monitor, Remote Administration
System, Resource Management System, SLA Monitor

Compound Patterns

Burst In, Burst Out to Private Cloud, Burst Out to Public Cloud, Cloud Authentication, Elastic
Environment, Infrastructure-as-a-Service (TaaS), Isolated Trust Boundary, Multitenant
Environment, Platform-as-a-Service (PaaS), Private Cloud, Public Cloud, Resilient
Environment, Resource Workload Management, Secure Burst Out to Private Cloud/Public
Cloud, Software-as-a-Service (Saa$S)

Consurner B

i
Consumer C

Cloud Consumers B and C can access and manage their provisioned IT resources using the
usage and administration portal.

NIST Reference Architecture Mapping

This pattern relates to the highlighted parts of the NIST reference architecture, as follows:

Innovations in
Teaching & Learning

Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA , Approved By A.I.C.T.E., New Delhi, permanently affiliated to JNTUH)

(An AUTONOMOUS Institution)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Innovative /Student Centric Teaching Method Form
Innovative Technique implemented: Online Quizl

Subject: Design Patterns

Topic: Unit-1

Name of the Faculty: R.R.S.Ravi Kumar
Class/ Section: IV B.Tech II-Sem CSE

Implementation:

Objective: “To assess the understanding of the subject”

Out Class activity: Send link of the quiz exam to student groups

In class activity: All the students write the test and submit answers.

Qutcome:

Lo e

Email *

Valid email

This form is collecting emails. Change settings

sl

Roll Number *

Short answer text

Design Patterns

unit 1l Online Agsezsnaat T4t

This pattern suwilds a Comsiex oect usIng Simple o0jgcts andusng & stef Dy Slel augrtalh
This pattery etz b eatn fphs §Te A eoTwlle s esmng sE oM

This patter o 5e 1k saticr oF o8 et

This pattatm § eged L4el g2l | - e LI Losc it o [0 b] oot &5 ek i 3 I At e

Which of the following pattern refers to creating duplicate objsct wiile keeping performance 'n

mind?

Frototype Baties

R-R-S . Rosn [Gunev
(Course Coordinator) (HOD-CSE)

Innovative Technique implemented: Online Quiz 2
Subject: Design Patterns

Topic: Unit-2

Name of the Faculty: R.R.S.Ravi Kumar

Class/ Section: IV B.Tech [I-Sem CSE

Implementation:

Objective: “To assess the understanding of the subject”

Out Class activity: Send link of the quiz exam to student groups

In class activity: All the students write the test and submit answers.

Outcome:

DP Assessment Test - 2 (Unit-11)

Form description

Email *

Valid email

This form is collecting enails. Change settings

Roll No "

Short answer text

Name *

Short answer text

Choose Gang of Four i Design Fatterrs

Find the Essential Elerments in Desan @atterns

Pattern Name.Problen Selutiaa Corsenlusnoes

Inheritance imglemantat on terataninrterprets

-5 . Qs [Eanmpn

(Course Coordinator)

. Assessment Sheet — CO

Wise (Direct Attainment)

09 5 v [3 z z 5 v 5 v z z z S EPSOVITEIT| Ov
65 £ € I3 z z [4 5 3 £ € z z 7 5 ZrSOVITEIT| 6F
[3 T € z z z 5 £ £ T [4 z 7 5 TPSOVTT6EOT| 8€
€9 € 3 T z [2 7 5 £ € € z z z 5 OPSOVTT69T| /€
65 S 5 I3 z [4 z S v £ S 7 z 3 3 SES0VTITE9T| 95
79 S v I3 3 3 z S [z v z [2 3 S LESOVITEOT| 5¢
0L € € t z 3 z 5 [€ € z [z S 9ESOVTTEIT| bE
59 3 T £ z 3 1 S € 3 T z z z S SESOVTITE9T| 85
79 £ € T z z T 5 € € 3 [z [5 PESOVTTEIT| 79
0L S S v 4 € T] 14 S S 4 [< S EESOVIT6IT| 1€
79 v [v z z z S [v v T z 7 5 ZESOVIT69T| Of
0L € € z z z z S z 3 € [4 7 [4 S OESOVITGOT| 67
0L € £ £ z [2 z S € € 5 [2 z z g 67S0VIT69T| 87
69 [[4 v T z T S v v z z z [4 S 8TSOVITE9T| LT
[z z 4 T z z S z z [2 0 7 z S LTSOVTT69T| 97
19 z z 4 T z 7 S z 4 z 3 [7 5 9ZSOVIT69T| 5¢
89 3 z £ T z z 5 3 z T 7 z 4 5 SZSOVIT69T| vt
89 v v v i z z S v [v 7 7 z 5 ¥ZSOVTT69T| €C
85 € € £ z z z S € £ 3 z 7 [4 5 €7S0VTT69T| 7T
L9 v v v z 2 [5 v v v z z 7 S 77SOVTI69T| 17
72 £ € z 3 z T 5 3 € € z z [3 S TZSOVTT69T| 07
69 3 [3 € z z T S € € € G z z G 0ZSOVTT69T| 61
[S v [3 [4 z 5 3 g 3 7 z 7 S 61S0VTT69T| 8T
L £ € v z [4 z 5 3 £ 3 7 [Z 5 8TSOVITE9T| L1
69 3 T £ z z z 3 € £ T z Z z S LTSOVIT69T| 9T
29 € 3 1 2 z z 3 € £ 3 3 z [4 5 9TSOVTIT69T| ST
69 5 5 v z z z 5 3 € 5 z z z 5 STSOVIT69T| bT
09 5 4 14 [4 4 [4 S ¥ i 14 (4 Z 4 (] PISOVITEOT| €T
oL £ 3 [z z 7 5 3 € 3 7 z z 5 £1S0VTT69T] 71
L € T [3 z z 1 5 £ £ 1 z z z S ZISOVIT69T| TT
9 € 3 1 z z T 5 £ € £ Z 2 [5 TIS0V1169T| 01
65 3 3 I3 z [4 T 5 3 S 5 z z 3 S OTSOVITE9T| 6
29 ¥ v v z [4 z S ¥ v 3 z [4 [5 60S0VT169T[&
59 3 3 z z 4 [4 S z € € z 7 z 5 80S0VTT69T| £
9 3 € 3 z z 4 S £ £ € 3 z z 5 £050VTT69T| 9
29 v 2 v 1 z z S [3 [4 z z z 5 9050VTT69T| &
0L z z z T z z S z z z 0 7 7 3 SOSOVITGOT| ¥
[[3 2 z 1 [3 2 5 z z z z z z 5 £0SOVTTEOT| €
£5 7 7 £ T z z 5 3 i z z 7 3 5 Z0SOVT169T| ¢
69 [v v 1 [3 [4 5 v 3 ¥ z [7 5 TOSOVITEIT| T
(wse) [i iy rag o P . : i
wexg pug (ISR (wz)to (WS)sD | (WslvD |(Wz) 8 €0 (Wz)zd | (W)t | ()
TR Ay ;]) ? A e i1 3 \ 1-IASY 0N BIY (NN
%09 3 R &] v-14vd
ploysaiyy %09 PIOYSIYL | AIN
:Aynoe4
dq:asino)

07-9T07 ‘HO1vd
BuusauiBug asuais J9indwo) jo Juswedag

(smowouoyny)AZojourda |, Jo AMNSU| NOAL BAPIA

P

was |1 -yaaLtg Al

0Z-6T02 13\ JNWapedry

o

o

£9 £ 4 4 1 [4 [4 S Z 4 [4 0 € T S TYSOVTT6IT| 76
9 Z 4 4 1 [4 4 S 14 [4 4 < Z 4 S TVSOVIT69T| T6
6F 14 4 € T [4 4 S € Z [4 £ (4 4 S OVSOVITe9T| 06
£9 14 14 v T [4 [4 S v v 14 [4 [¢ S 6650VTIT69T| 68
15 £ € € [4 4 4 S € € 3 {4 7 4 S 8650VTTEIT| B8
85 v v v 4 ‘ (4 Ly v 12 14 4 [4 4 S LBSOVTIT6ST| L8
LE € £ {4 4 4 1 S 14 3 3 i (4 4 S 9650VTIT69T| 98
55 € £ € 4 4 T S € € £ [4 [4 4 S S6SOVITRIT| S8
9 5 14 14 14 4 5 S v S 4 4 (4 4 S T6SOVIT6IT| +8
09 £ 3 v 4 4 7 S |4 13 3 [4 {4 4 5 £6S0VIT69T| £8
59 B T € [4 (4 [4 S £ € T 4 [4 (4 S ¢690VIT6IT| 78
St £ 13 T < 4 T 5 € 13 € 4 [4 (3 S T6S0VTT69T| 18
65 S S 4 z 4 4 S v € S [4 4 4 S 06SOVITEIT| 08
19 5 14 14 G (4 4] v [4 4 (4 € 4 S 88S0VTITEIT| 64
95 € € v [4 [4 [4 S v € 3 [4 [4 4 5 L8SOVTIT69T| 8L
LS 3 T € [4 14 T S 3 € T [4 [4 (4 S 98S0VTT69T| L
9 £ 13 T 5 4 1 S £ 3 £ (4 £ [4 S S8SOVIT6IT| 9L
09 S S 4 4 Z 1 S v S S [4 Z 4 S P8SOVITEIT| SL
95 14 14 v 4 4 (4 -] v v 14 [4 4 (5 S €8S0VIT6IT| ¥/
05 £ £ C 4 4 4 S |4 € E 4 [4 4 5 T8SOVIT6IT| €L
65 € 13 € 4 Z T S £ 3 £ [4 [4 [4 S 08SOVIT69T| 7L
bs v ¢ v 1 Z [4 S v v [4 4 [(4 5 6LS0VTLIRIT| TL
65 [4 4 4 T 4 4 Hl 7 [4 4 0 [4 4 S LLSOVTTRIT| 0L
14 (4 4 [4 T 4 4] Z [4 14 C (4 [4 S 9/50VTT69T| 69

={T 4 £ T [(4 S £ {4 4 4 4 [4 S SLSOVTTIEIT| 89
19 14 14 v T [4 4 S 14 14 4 4 (4 4 5 €LSOVTT6IT| L9
1] € 13 8 4 4 [4 S € € £ (5 [[4 S TLS0VTIT69T| 99
89 v 14 v 4 l [4 5 14 v 4 [4 {4 4 S 0LSOVTT69T| S9
95 13 € 4 74 {4 T S 4 £ € C 4 4 S 69SOVIT6E9T| 9
LS £ £ £ [4 {4 T S E € |3 [4 T [4 S 89S0VT169T| £9
99 S v 14 (4 [4 4 S v S 14 (4 4 (4 5 L9SOVTI6IT| 79
09 £ £ v d 4 z S v € € T (4 (4 S 9950VTI69T| 19
89 £ I £ Z [4 4 5 £ 3 T [4 [4 (4 S S9S0VTI69T| 09
69 £ 13 T < [4 4 S € € € 4 4 [4 9 PISOVIT69T| 65
15 S El v L4 [4 [4 S v £ S [4 {4 4] £9S0VIT69T| 85
s S 14 14 4 [4 Z S 14 [4 14 4 (4 T 5 €9S0VTI169T| LS
LS € € v {4 4 4 S v £ 13 4 [4 4 5 TOSOVTITEIT| 95
65 € 1 £ 4 4 T] £ £ T 4 [4 4 S 0950VTT69T| S5
9 15 £ T 4 T T S £ £ 3 [4 4 S 65SS0VIT69T| bS
19 S S 14 14 [4 T S v S S [4 [4 C S 8SS0VIT6IT| ES
09 14 14 v 4 T (S \4 v 4 14 L4 [4 S 95S0VIT69T| 7§
55 £ € [4 14 [4 4 S 4 € € [4 [4 (4 5 SSS0YTT69T| 15
[4] £ 3 t < 4 {4 5 € £ € € [4 Z 5 PSSOVTITEIT| 0§
S5 14 [4 v T [(4 5. 14 L4 Z [4 4 4 S £SSOVITEIT| 6F
19 E [4 [T ¢ [4 S [4 4 [4 0 (s 14 S ZSS0VITEIT| 8F
09 4 [4 [T 4 Z 5 [4 < [4 [4 [4 S TSSOVIT6IT| L
Ly € [4 3 T [4 {4 S 3 4 Z [4 Z 14] 0SS0VTT69T| 9t
6E v 14 4 1 [4 [4 5 v v v ¢ [4 4 S 6VS0VIT6IT| St
19 3 € £ [4 [4 14 S 3 £ |3 14 14 [4 S 8YSOVITEIT| b
09 v 14 4 4 [4 {4 S 14 v 14 [4 [4 4 S 9PSOVITEIT| EV
£S5 g £ 14 [4 (4 T 5 (4 £ € (4 4 4 S SYSOVITEIT| v
(45 € € £ [4 [4 T S 13 € € [4 Z [4 S PYSOVITEIT| Ty

09 £ 3 14 Z (4 [4] v £ £ 74 4 [4 S 84S0VTTE9T| ¥l
19 E T £ [4 [4 T) € £ T 4 € [4 S L3S0VIT69T| EVT
85 £ 3 1 4 4 T 5 £ € 3 4 [4 T S 9450VIT69T| THT
5 5 S 2 [4 [4 1 S 14 S S 74 & 4 S YASOVITEAT| TrT
85 t ¥ v d 4 4 S 14 4 v {4 [4 i S €450VIT69T| OF1
65 £ £ [4 [4 4 4 S [4 € £ 4 Z [4 S Z4SOVITE9T| BET
99 £ £ £ [4 (4 Z S £ & & z € 4 S T4S0VITE9T| 8ET
95 v 4 ¥ 1 4 L4 5 v 14 [4 [4 [4 [4 5 04S0VIT69T]| LET

ol 1 4 (4 T 4 [4 S Z Z [4 0 € [4 S 6350VTT69T| 9T
79 [4 4 [4 T 7 [4 S [4 {4 [4 4 4 4 S 8350VTT69T| SET
65 [4 (4 3 T Z Z S 3 € [4 Z (4 [4 S £3SOVTT6EAT| PET
ra] v v v 1 4 4 S 14 14 v Z (4 Z 5 9350VT1691| 85T
65 3 € £ [4 4 Z S € € € l < 4 5 53S0VTTI69T| 791
59 v v 14 14 [4 Z S v v v [4 4 3 S ?3ISOVITEIT| TET
59 £ 3 4 l [4 3 S [4 € E 4 4 z S €350VTT69T| OET
09 3 5 13 4 7 T S £ 13 € 4 [4 [4 S TISOVITE9T| 671
95 S v 14 [4 4 7 S v S 14 [4 [4 4 S 0350VTT69T| BZT
S5 3 € 4 (4 Z [4 S v € € 4 [4 4 S 60S0VTIT691| LTT
9 £ T € 4 4 [4 S € £ T 4 [4 4 5 80S0VITEIT| 97T
[4:] £ g T 4 rd [4 S £ £ L3 Z [4 4 S LOSOVITE9T| STT
L5) S v [4 [4 [4 S v € S 4 Z € S 90SOVITEIT| vTT
[A4 S 14 i {4 [4 [4 S 14 Z 14 7 4 [5 SASOVITE9T| €21
LS € 13 v [4 [4 [4 S v € € [4 [4 z S PASOVITE9T| 7TTT
59 £ T £ 4 & 1 S £ € T 4 T 4 S EQSOVITEIT| 17T
9v £ £ T {4 4 T S 3 € € Z Z 2 S 2aS0VI169T| 07T
S5 S S v & 4 T S v S S Z Z T S TASOVTITE9T| 611
8v 4 v v [4 4 [4 S |4 4 4 (4 4 [4 S 00S0VTTE9T| BTT
15 3 {2 [4 € 4 7 S 4 £ € A [4 z 5 6I50VTI6IT| LTT
TS 3 13 £ 4 4 [4 S £ £ £ (4 [4 (4 S LISOVITEIT| 91T
[£] L4 [4 14 T € [4 S 14 14 [4 (4 [4 k4 S 9JS0VTT69T| STT
19 % [4 [4 T Z [4 S [4 € [4 0 (4 [4 S SISOVTIT6IT| #1IT
L9 4 Z & T & 74 S [4 4 [4 Z [4 4 S PISOVITE9T| €E1T
95 /4 [4 £ T [4 [4 S € Z [4 [4 Z (4 S £IS0VITRIT| TTT
vS L4 L4 14 T 74 [4 S 4 14 v l i [4 S ZISOVTT6IT| TTT
15 £ 3 € 4 4 Z S 3 € E [4 4 g S TISOVITE9T| OTT
€9 v 4 14 4 4 4 S v 14 14 4 [4 4 S 0J50VTT69T| 60T
09 3 € [4 [4 [4 T S [4 € 3 4 7 4 S 6850VTT69T| 80T
s £ 3 € [4 [4 T S € € €. 4 [4 4 S 88S0VTIT69T| L0T
LS S L4 14 14 4 4 S 4 S v £ 4 4 S LESOVITEIT| 90T
85 € 13 4 z V4 Z 5 v € € Z [4 4] 98S0VIT69T| SOT
(44 € T £ [4 4 S 3 E T 4 Z 4 5 S850VTIT69T| +0T
15 £ 3 T [4 4 i S € £ 3 [4 £ £ 5 ¥8S0VIT69T| €01
61 S S 14 4 T [4 S v £ S 4 [4 4 S €950VIT69T| 70T
vs S v 14 4 3 [4 S v l 14 4 € 4 S Z9S0VI169T| 10T
LS £ € v 4 7 [4] v £ £ 4 & 4 S 19S0VIT691| 00T
£5 £ T £ & 4 T S € € T z [4 4 S 09S0V1IT69T| 66
(4] € £ T Z (4 T 5 € € 3 z 4 [4 S 6VSOVITEIT| 86
0s S S 14 [4 4 T S v S S z z 4 S 8VSOVTIRIT| L6
19 14 v 14 4 4 [4 S v v v 4 7 4 S LYSOVITGIT| 96
(4] £ 13 [4 Z T4 [4 S [4 € € 4 [4 S 9VSOVITEIT| S6
9 £ £ £ Z 4 [4 S € € 3 Z Z [4 5 PYSOVITEIT| v6
€9 14 4 4 T 04 [4 5 v 4 4 4 4 4 S EVSOVITEIT| €6

~

)

£S5 € € 3 4 [4 (4 S 13 3 £ 4 |5 4 S SHSOVTTEIT| 94T
44 v v v (4 [4 [4 S 4 v v [[4 4 S PISOVTITEIT| SLT
133 £ £ [4 4 [4 1 S [4 £ £ 4 [4 4 S EXSOVITEIT| vLT
95 £ £ £ 4 4 1 S 3 E £ 4 4 4 S OASOVITEIT| €41
95 S v v Z 4 (4 L) 4 S 4 4 [4 G S OASOVTITEIT| TLT
5 € € v [4 1 4 S 2 € 3 4 [4 4 S BISOVITEIT| TLT
95 € T € 4 T [4 S £ £ 1 {4 4 4 S 9IS0VIT6E9T| 04T
79 € 3 T [4 1 (4 S 3 £ € 4 [4 T S SISOVTTROT| 69T
15 S S v € T |4 S 4 £ S [4 4 4 5 PISOVITE9T| 89T
14 S v 14 T 1 (4 S 4 (4 14 [4 [4 [4 S EISOVITEIT| L9T
(4 13 € v Z T 4 S 4 |3 £ 4 (4 4 S CISOVTTEIT| 99T
LS £ T 3 (4 T 1 S 3 £ T e 14 (4 S TISOVITE9T| 59T
134 € £ T z I 1 & £ € £ 7 {4 [4 S OfSOVITE9T| ¥9T
£9 5 S L4 Z 1 1 5 v S S (5 [4 (4 S BHSOVITEIT| €91
65 v v 14 [4 4 [4 S v 14 v 4 [4 4 S LHSOVIT69T| 791
L5 € € [4 4 4 [4 S [4 3 £ 74 Z 4 S 9HSOVTTE9T| 19T
89 £ 3 L2 t [4 [4 S £ € € 4 4 [G YHSOVITE91| 091
€9 L4 Z v T 4 4 S 2 14 4 4 [4 4 S EHSOVITE9T| 65T
(34 [[4 4 T [4 [4 S [4 (4 [4 0 [4 [4 S THSOVITE9T| 85T
95 [4 [4 4 T (4 4 S [4 [4 [[4 4 4 S THSOVIT69T| £ST
09 [4 4 € T 4 4 5 € 4 [4 Z [4 [4 s OHSOVTTGIT| 95T
s v v v T [4 [4 S 4 14 4 4 4 4 S 6950VITEIT| ST
19 £ £ 13 4 (4 4 S € 13 € [4 4 4 S 89S0VIT69T| #ST
09 v L4 L4 4 T 4 5 14 14 14 (4 rd 4 S LOSOVITHIT| EST
79 € € 4 (4 4 T & 14 € 3 G 4 [4 5 99S0VIT6IT| ST
137 € € € [4 4 1 S E £ € 4 [4 4 S SOSOVITHIT| TST
95 S v v 4 [4 [4 S 4 S v 4 4 [4 S YOSOVITEIT| 0ST
1534 € € v 4 4 4 S 4 3 € {4 4 [4 S £9S0VITEIT| 6¢T
v € E € < [4 4 S € £ 1 4 4 4 S 7950VIT69T| 8FT
19 £ £ T 4 T 4 S £ £ € 2 [4 (4 S TOSOVITEIT| L¥T

-|S S v 4 [(4 S 4 E S [4 [4 4 S 09SOVITEIT| 9T
9 S v 14 4 4 4 S 14 4 v (4 4 4 S 6450VIT69T| StT

| INIWNIVILVOD |
T , Jineaesig ,
R TPra0as suapiis o on,
£T¢C £ paduwanpe sy Joax

T't 8'1T s)sew adesany
9 € T € [4 T [4 S {3 £ T [4 4 [4 S TOSOVBT6LT| £ETT
5 € € T [4 T [4 S € € £ 4 [4 4 S €0S0VSTRLT| 72T
€9 S S 14 4 T [4 5 4 |5 S 4 (4 [4 § C0SOVSTBLT| TZC
€9 € € € [4 [4 [4 S £ £ 3 4 0 (4 S TOSOVSTBLT| 072
S5 4 14 14 Z Z [4 S 14 14 14 [4 [4 Z S 0DSOVITEIT| 61T
85 £ {3 [4 [4 z T S [4 £ € (4 (4 [4 S 6dSOVIT69T| 81C
€L £ € € 4 Z i S £ £ € [4 [4 [4 S 8dSOVITROT| L12
99 S 4 4 [4 [4 [4 S 14 S 14 4 Z 4 5 LdSOVTT6IT| 91T
59 3 3 14 [4 T [4 S 14 € £ [4 T 4 9 9dSOVITE9T| S1Z
[44 € T [Z i Z S (3 € T 4 14 (4 9 SdSOVITE9T| b1Z
65 € € T (2 T 4 S € 3 3 4 4 [4 5 PdSOVITEIT| ETC
(43 S S 14 {4 T 4 S v £ S (4 4 [4 S £dS0VTTRIT| ZTT
v9 S {4 v 4 T 4 S 14 [4 v 4 14 [4 S ZdSOVTITE9T| 112
€9 € 3 14 [4 T [4 S 14 £ £ 4 4 4 g TdSOVITE9T| 0TC
#S € T € /4 T T G £ € T T 74 [4 S 0dSOVITE9T| 607
TL £ € T 4 T T S € € £ [/ 4 Z S BNSOVTITEIT| BOZ
0L S S 14 [4 T 1 S 14 S S 4 {4 [4 S 8NSOVTTRIT| L07
89 v v 4 T4 z [4 S 14 14 14 [4 {4 [4 S LNSOVTT69T| 902
vl £ € 4 4 z 4 S [4 £ £ [4 {4 [4 5 9NSOVYTT6IT| S0
[4:] € € € 4 7 (4 S £ £ £ [4 d 4 S SNSOVTTE9T| v0T
LS |4 4 4 T [4 [4 S 14 14 4 [4 14 (4 S PNSOVTITE9T| €07
95 € [4 [4 T Z Z S Z £ 4 0 (4 4 5 ENSOVITEIT| 20T
0L [4 [4 [4 T 4 [4 S [4 4 4 [4 rd [4 S INSOVITEIT| T0T
TL [4 [4 € T [4 4 S £ (4 Z [4 [4 [4 S TNSOVTT69T| 00T
T ¥ 14 ¥ T Z [4 S ¥ 14 14 [T4 € S ONSOVTITGIT| 66T
59 € 3 € Z {4 [4 S 3 £ 3 [' z S 6NSOVITEIT| 861
99 14 v v 4 [4 4 5 14 14 14 [4 z [4 S SINSOVTITEIT| 26T
89 £ 3 z z 4 T S [4 € € é [4 4 S LINSOVTTEIT| 96T
L9 € 3 3 4 4 T S £ £ £ 4 4 4 S 9INSOVTTEIT| S6T
79 S 4 14 z & (4 S 14 9 14 (4 4 4 S PNGOVITEIT| veT
79 £ 3 v z 1 4 S 4 £ € 4 4 4 S EWSOVTTEIT| E6T
09 € T € [4 1 [4 S 13 € E [4 4 [S ZINSOVTTEIT| 76T
19 £ £ T [4 T [4 S € € £ [4 4 [4 S TINSOVIT6E9T| T6T
0s 5 S v € T 4 S ¥ € S [4 4 4] OWSOVTTE9T| 06T
85 S 14 v z T z S ¥ 4 4 4 (4 (4 S 6150VIT69T| 68T
[44 5 € 14 [4 T 4 S ¥ € € [4 [4 4 S 8150VTT69T| 88T
514 £ IE & [4 E E S € € T & Z z S L1SOVTT69T| £8T
85 £ £ i z i T S £ £ £ [4 4 4] 9150¥TT69T| 98T
09 S 5 14 i 3 T S 14 S S € (4 4 S S1S0VITE9T| S8T
S5 14 L4 L4 < 4 4 S 14 14 14 [4 (4 [4 S #1SOVITE9T| ¥8T
8t £ 3 w < z Z 5 4 € € Z Z 4 S €150VIT69T| EBT
L5 £ £ £ ¢ 4 4 S € E 3 Z Z [4 L C1SO0VITE9T| 8T
114 14 4 14 T 4 4 S v 4 Z 4 4 [4 S T1S0VIT69T| 18T
£9 4 (i [4 T d 4 5 (4 4 [4 0 & [4 S 01S0VTT69T| 08T
19 4 4 z T 4 (4 S 4 [4 4 z 4 [4 S SASOVITEIT| 64T
9z [4 4 £ T g Z S . (4 Z 4 4 [4 s LASOVTITEIT| BLT
514 4 4 t T ' [4] v ¥ 14 [4 [4 4 S 9ASOVTITEIT| LLT

m

OH YOLYNIQHOO0I-ISHNOD

VO SOV S P

juawiuieRy 0D (184380 Ppu3) u3WUIERY 0D juawiuieny 0y Ny anjea Poyla 02

354N0J 3HL HO4 SO 40 LNIINSSISSY

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

R15 16-20
DP
OP1 oP2 OP3 TOTAL ATTAIN

CO1 3 10 210 223 2.93

CO2 5 20 198 223 2.87

CO3 3 20 200 223 2.88

Cco4 7 16 199 223 2.85

CO5 5 8 210 223 2.92
2.89

CO OVERALL ATTAINMENT=80% OF Direct + 20% of Indirect

O F%xY «+ 02 -$9 — 2-9%

Y

Course End Survey

Form

e VIDYA JYOTHI INSTITUTE OF TECHNOLOGY

(Accredited by NBA, Approved by AICTE New Delhi & Permanently Affiliated to JNTUH)
- Aziz Nagar Gate, C.B. Post, Hyderabad-500 075.

Department of Computer Science & Engineering
Course End Survey FormAcademic year: 2019-20

Name of the student T Year &sem IV -1l

Roll number Regulations R 15

Dear Student,
We need your help in evaluating the courses offered, by responding the short survey below.

Your feedback is very valuable for us in order to continually improve our program. The aim of this survey is
to evaluate how well each of the courses has prepared you to have necessary skills.

Your responses will be kept confidential and will not be revealed to anyone outside the department without your
permission.

Please indicate (\1) the level to which you agree with the following criterion:
(3: Strongly agree 2: Agree |: Strongly disagree)

" Name of The Course:DESIGN PATTERNS RATING

After completing this course the student must demonstrate the knowledge and ability to 3 2 |

CO 1 | Understand the Design patterns in software applications

co 2 | Discuss the Creational Patterns

co 3 | Categorize the Structural Pattern

CO 4 | Investigate Behavioral Patterns

co 5 | Construct the good design pattern structures

Any other comments / suggestions:

Signature

