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COURSE HANDOUT 

MATHEMATICS-I 
(MATRICES AND CALCULUS) 

 

Course Overview: 
This course provides mathematical knowledge required to analyze problems encountered in engineering. 
In this course, the students are acquainted with matrices, solution of system of linear equations, eigen 
values and eigen vectors, sequence and series, beta and gamma functions, mean value theorems and 
functions of several variables.  
 

Course Objectives: 
  
1. Determine the rank of the matrix and investigate the solution of system of equations by applying the 

    concepts of consistency.  

2. Concepts of Eigen values and Eigen vectors and the nature of quadratic form by finding Eigen values.  

3. Concepts of sequence and series and identifying their nature by applying some tests.  

4. Mean value theorems geometrical interpretation and their application to the mathematical problems, 

    Evaluation of improper integrals using Beta and Gamma functions.  

5. Partial differentiation, Total derivative and finding maxima minima of functions of several variables.  
     

Course Outcomes:  
 

After learning the contents of this course the students must able to:  
 

1. Write the matrix representation of system of linear equations and identify the consistency of the system 

    of equations.  

2. Find the Eigen values and Eigen vectors of the matrix and discuss the nature of the quadratic form.  

3. Analyse the convergence of sequence and series.  

4. Discuss the applications of mean value theorems to the mathematical problems, Evaluation of    

    integrals using Beta and Gamma functions.  

5. Examine the extrema of functions of two variables with/without constraints.  
 

Course Syllabus  
 

UNIT-I: Matrices and Linear System of Equations  
Matrices and Linear system of equations: Real matrices – Symmetric, Skew – symmetric and Orthogonal. 
Complex matrices: Hermitian, Skew – Hermitian and Unitary. Rank – Echelon form, Normal form. 
Solution of linear systems – Gauss Elimination method , Gauss-Jordan method & LU Decomposition 
method.  
 

UNIT-II: Eigen Values and Eigen Vectors  
Eigen values, Eigen vectors – properties, Cayley-Hamilton theorem (without Proof) - Inverse and powers 
of a matrix by Cayley-Hamilton theorem – Diagonolization of matrix – Quadratic forms: Reduction to 
canonical form, nature, index and signature.  
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UNIT-III: Sequences & Series 
Basic definitions of Sequences and series, Convergence and divergence, Ratio test, Comparison test, 
Cauchy’s root test, Raabe’s test, Integral test ,Absolute and conditional convergence. 
 

UNIT-IV: Beta & Gamma Functions and Mean Value Theorems  
Gamma and Beta Functions-Relation between them, their properties – evaluation of improper integrals 
using Gamma / Beta functions. Rolle’s theorem, Lagrange’s mean value theorem, Cauchy’s mean value 
theorem, Generalized mean value theorem (all theorems without proof) – Geometrical interpretation of 
mean value theorems.  
 

UNIT-V: Functions of several variables  
Partial differentiation and total differentiation, Functional dependence, Jacobian determinant- Maxima 
and minima of functions of two variables with constraints and without constraints, Method of Lagrange’s 
multipliers.  
 

Text Books:  
1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2014 

2. R.K. Jain, S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Pulishing, 3rd Edition, 2016 
3. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education, Chennai, 29th Reprint, 2017 
 

References:  
1. G.B.Thomas, R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, 2002  
2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006   
3. Michael Greenberg, Advanced Engineering Mathematics, 2nd Edition, Pearson, 2002 
 

UNIT-I: Matrices and Linear System of Equations 

Definitions: 
Square matrix: A matrix in which the number rows is equal to the number of columns, is called a square 

matrix. Thus, [ ]  ij n nA a is a square matrix of order .n
 

Principal diagonal of a square matrix:
 
Let [ ]  ij n nA a be a square matrix. The elements of ija of matrix

A for which i j are called the diagonal elements of .A The line along which the diagonal elements lie is 

called the principal diagonal of .A
 

Diagonal matrix: A square matrix in which all non-diagonal elements are zero is called a diagonal 

matrix. If 1 2, ,. . . ., nd d d are the diagonal elements of a diagonal matrix ,A then A is denoted as 

 1 2, ,. . . ., . nA diag d d d
 

Example:  
2   0  0

0 3  0 2, 3,5

0   0  5

 
     
  

D diag  

Identity matrix: A diagonal matrix in which each diagonal element is unity i.e.,1 is called an identity 

matrix or a unit matrix. An identity matrix of order n  is denoted by .nI
 

Example: 2 3 4

1 0 0 0
1 0 0

1 0 0 1 0 0
, 0 1 0 ,

0 1 0 0 1 0
0 0 1

0 0 0 1

 
                     

 

I I I  
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Upper triangular matrix: A square matrix in which all the elements below the principal diagonal are 
zero is called an upper triangular matrix. 

Example:

3  1 2

0  8  6

0  0 4

 
   
  

U  

Lower triangular matrix: A square matrix in which all the elements above the principal diagonal are 
zero is called a lower triangular matrix. 
 

Example:

3  0 0

5  8  0

7  9  4

 
   
  

L

 
Triangular matrix: A square matrix is said to be a triangular matrix if it is either upper triangular matrix 
or lower triangular matrix.

 
Transpose of a matrix: The matrix obtained from a given matrix A by interchanging its rows and 

columns is called the transpose of A and is denoted by or   .TA A  

Example: If 
1 2 5

3 6 9

 
  
 

A then

1 3

2 6

5 9

 
   
  

TA  

Trace of a matrix: The sum of the principal diagonal elements of a square matrix A  is called its trace 

and is denoted by tr( ).A  

Example: The trace of the matrix 

5 1 2

1 7  6

2 6 4

 
   
   

A is  tr =5+7 4 8 A  

Determinant of matrix: The determinant of a square matrix 
11 12 13

21 22 23

31 32 33

 
   
  

a a a

A a a a

a a a

is denoted by det( )A

or A and is defined as 
11 12 13

22 23 21 23 21 22
21 22 23 11 12 13

32 33 31 33 31 32
31 32 33

   
a a a

a a a a a a
A a a a a a a

a a a a a a
a a a

 

               

     11 22 33 23 32 12 21 33 23 31 13 21 32 22 31     a a a a a a a a a a a a a a a  

Singular and non-singular matrices: A square matrix A is said to be singular if 0.A  If 0A then 

A  is said to be non-singular. 

Note: 1A exists iff 0.A
 

Real matrix: A matrix A is said to be real if every element of A is a real number 

 A real square matrix A is said to be Symmetric if TA A  

Example: 

3 1 2

1 0  6

2 6 4

 
   
   

A  

 A real square matrix A is said to be Skew-Symmetric if TA A  



 

Dept. of Mathematics           Page 4 of 28 
 

Example: 

0 3 5

3 0 2

5 2 0

A

 
    
  

 

Note: The principal diagonal elements of a Skew-symmetric matrix are all zeros. 

 A real square matrix A is said to Orthogonal if T TAA A A I   or 1TA A  

Example: 1
3

 1  2   2

 2  1 2

2  2 1

 
   
   

A  

Properties of Real Matrices:   
Property 1: Every square matrix can be uniquely expressed as the sum of symmetric and skew-symmetric 
matrices. 

Proof: Let Abe any square matrix and A P Q   where 1 1
2 2,( ) ( )T TP A A Q A A     

1 1 1 1
2 2 2 2( ) [ ( ])( )( ) ( ) ( )

T
T T T T T T T T T TP A A A A A A A A P A A               

P is a symmetric matrix 

Now 1 1 1 1
2 2 2 2( ) [ ( ])( )( ) ( ) ( )

T
T T T T T T T T T TQ A A A A A A A A A A             

   1
2 ( )TA A Q         

Q is a skew-symmetric matrix 

To prove the sum is unique: If possible, let A R S   where TR R and TS S   

Now 1 1 1 1
2 2 2 2( ( ) ( ( )) )( )T T T TP A A R S R S R S R S R S R S R                

Similarly,  1 1 1 1
2 2 2 2( ( ) ( ( )) )( )T T T TQ A A R S R S R S R S R S R S S                

P R   and Q S  
Thus, every square matrix can be uniquely expressed as the sum of symmetric and skew-symmetric 
matrices. 
Property 2: The inverse and transpose of an orthogonal matrix are orthogonal. 

Proof: Let Abe an orthogonal matrix T TAA A A I    … (1)    

 (i) Taking transpose to equation (1), we get ( ) ( )T T T T TAA A A I   

                           ( ) ( )T T T T T TA A A A I                  [ ]TI I  
TA is an orthogonal matrix. 

(ii) Taking inverse to equation (1), we get 1 1 1( ) ( )T TAA A A I     

                         1 1 1 1( ) ( )T TA A A A I                   1[ ]I I   

   
1 1 1 1( ) ( )T TA A A A I         1 1[ ( ) ( ) ]T TA A   

1A is an orthogonal matrix. 

Property 3: If ,A B are orthogonal matrices of same order then AB and BA  are orthogonal. 

Proof: Let ,A B be the orthogonal matrices of same order 

  T TAA A A I  and ..... (1)T TBB B B I          

(i) Consider ( )( ) ( )( ) ( )T T T T T T TAB AB AB B A A BB A AIA AA I              [By (1)] 

     Now    ( ) ( ) ( )( ) ( )T T T T T T TAB AB B A AB B A A B B IB B B I              [By (1)] 

. .,  ( )( ) ( ) ( ) T Ti e AB AB AB AB I  
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      AB is an orthogonal matrix 

(ii) Consider ( )( ) ( )( ) ( )T T T T T T TBA BA BA A B B A A B BIB BB I              [By (1)] 

     Now    ( ) ( ) ( )( ) ( )T T T T T T TBA BA A B BA A BB A A IA A A I              [By (1)] 

. .,  ( )( ) ( ) ( ) T Ti e BA BA BA BA I       
BA is an orthogonal matrix 

Property 4:  The determinant of an orthogonal matrix is 1.  

Proof: Let Abe an orthogonal matrix T TAA A A I             

 Consider   TAA I  

Applyingdet on both sides, we get det( ) det( )TAA I  

               det( )det( ) 1TA A            [ det( ) 1]I   

            det( ) det( ) 1A A   [ det( ) det( )]TA A  

          2det( ) 1 A  

    det( ) 1 A  

Complex matrix: A matrix A is said to be complex if at least one element of A is a complex number. 

Example:
2 3 7

4 2

 
   

i
A

i
 

Conjugate of a matrix: The matrix obtained by replacing the elements of a complex matrix A by the 

corresponding conjugate complex numbers is called the conjugate of the matrix A and is denoted by .A   

Transposed conjugate of a matrix: The transposed conjugate of matrix  . .,  
T

i eA A and the conjugate of 

the transpose of matrix  . .,  Ti eA A are equal. Each of them is denoted by A
 

Thus,       
T TA A A  

Example:

3 1 1 3 1 1

2 2 2 3 2 2 2 3

0 7 6 0 7 6

i i i i

A i i A i i

i i i i

      
           
          

 

  
3 2 0

   1 2

1 2 3 7 6

T
i

A A i i

i i i


 

     
     

 

 A complex square matrix A is said to be Hermitian if . .,  TA A i e A A  

Example:

3 1 2 3 3 1 2 3

1 0 6 1 0 6

2 3 6 4 2 3 6 4

i i

A i A i

i i i i

      
         
            

 

3 1 2 3

( ) 1 0 6

2 3 6 4

T

i

A A i A

i i



  
     
     

   

A is a Hermitian matrix 
Note: The principal diagonal elements of a Hermitian matrix are all real. 

 A complex square matrix A is said to be Skew-Hermitian if . .,    TA A i e A A  
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Example: 

2 3 2 2 3 2

2 2 4 3 2 2 4 3

3 2 4 3 0 3 2 4 3 0

i i i i i i

A i i i A i i i

i i i i

         
               
           

 

  

2 3 2 2 3 2

  ( ) 2 2 4 3 2 2 4 3

3 2 4 3 0 3 2 4 3 0

T

i i i i i i

A A i i i i i i A

i i i i



         
                   
           

 

. .,   i e A A A is a skew-Hermitian matrix 

Note: The principal diagonal elements of a Skew- Hermitian matrix are either zeros or purely imaginary 

 A complex square matrix A is said to be Unitary if 
  AA A A I or 

1 A A  

Example:
1 11

1 13

i
A

i

 
      

  1 11

1 13
  

      

T i
A A

i
 

Now 
1 1 1 1 3 0 1 01 1 1

1 1 1 1 0 3 0 133 3

i i
AA I

i i
         
                     

 

Similarly, we can prove that A A I      

A is a unitary matrix. 
Properties of Complex Matrices: 
 

i) Every square matrix can be uniquely expressed as the sum of Hermitian and skew- Hermitian matrices. 

ii) Every Hermitian matrix can be written as A iB where A is real and symmetric and B is real and 
skew- symmetric. 

iii) Every Skew-Hermitian matrix can be written as A iB where A is real and skew-symmetric and B is 
real and symmetric. 
iv) The inverse and transpose of a unitary matrix are unitary. 
v) The product of two unitary matrices is a unitary matrix. 
Elementary transformations on a matrix: 
Any one of the following operations on a matrix is called an elementary transformation. 

(i) :i jR R Interchange of ith row and jth row.  

(ii) :i iR kR Multiplication of each element of ith row with a non-zero constant k.  

(iii) :j j iR R kR Addition of k times the elements of ith row to the corresponding elements of jth row. 

The corresponding column transformations are denoted by , ,    iii j i j jC C C kC C C kC
 

Equivalence of matrices: If a m n matrix B is obtained from a given m n matrix A by finite number 

of elementary transformations on ,A , then A is said to be equivalent to .B  

Symbolically, we can write ~A B  
Minor of a matrix: Let A be a matrix of order .m n The determinant of a square sub-matrix of order r  
of matrix A  is called its minor of order .r   

Rank of a matrix: A positive integer r is said to be rank of a non-zero matrix A of order m n if             

it has at least one non zero minor of order r  and every minor of order 1)( r is zero. 

The rank of the matrix A is denoted by ( ). A  

Properties:  
i) If A is equivalent to B . .,  ~i e A B  then ( ) ( )A B   

ii) Rank of a matrix Aand its transpose are the same . .,  ( ) ( )  Ti e A A  

iii)  Rank of a null matrix is zero 
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iv)  If A is a non-zero matrix then ( ) 1 A  

v) If A is a non-singular matrix of order r then ( ) A r  

vi) If A is a square matrix of order n and ( )A n  then 0A  i.e., A is singular. 

vii) If A is a matrix of order ,m n then  ( ) min , A m n  

viii) Rank of the identity matrix nI is n  

Zero row and Non-zero row: If all the elements in a row of a matrix are zeros, then it is called a zero 
row and if there is at least one non-zero element in a row then it is called a non-zero row. 
Row reduced echelon form of a matrix:  
A matrix is said to be in echelon form if it satisfies the following conditions 
 i) Zero rows, if any, must be below the non-zero row 
 ii) The number of zeros before the first non-zero element in a row is less than the number of such zeros in  
      the next row. 
Note:  i) The number of non-zero rows in row reduced echelon form of a matrix is equal to its rank  
ii)  Use elementary row operations only to reduce the matrix to echelon form. 
iii)  Elementary transformations do not alter (effect) the order and rank of a matrix. 

Normal form of a matrix: Every non-zero matrix Aof rank r can be reduced by a sequence of  

elementary transformations, to one of the forms  ,  ,  ,  
   
   
   

r r
r r

I I O
I I O

O O O
 , called the normal form 

of A , where rI is the identity matrix of order .r  

Note: Use elementary row and column transformations to reduce the matrix into normal form. 
System of linear equations: 

Consider the system of m  linear equations in n -unknowns 1 2, , ..., nx x x  

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

...

...

......................................................

...

n n

n n

m m m mn n m

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

    
    

    

    

The matrix representation of above system is AX B     . . .  (1) 

where

11 12 1

21 22 2

1 2

...

...
,

... ... ... ...

...

n

n

m m mn

a a a

a a a
A

a a a

 
 
 
 
 
 

1

2

...

n

x

x
X

x

 
 
 
 
 
 

1

2

...

m

b

b
B

b

 
 
 
 
 
 

 

Here A is the coefficient matrix, X is the column variable matrix and B is the column constant matrix. 

The system AX B  is said to be 

(i) Non-Homogeneous if B O         

(ii) Homogeneous if B O  

The Augmented matrix of the system (1) is denoted by [ | ]A B  and defined as 

 

111 12 1

21 22 2 2

1 2

 ...

...  
|

... ... ... ...  ...

...  

 
 
   
 
  

n

n

m m mn m

ba a a

a a a b
A B

a a a b
 Conditions for consistency of non-homogeneous system of linear equations: 
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Consider the non-homogeneous system AX B  

i) If ( ) ( | )A A B r n    (number of unknowns) then the system AX B  is consistent and  

has unique solution. 

ii) If ( ) ( | )A A B r n     (number of unknowns) then the system AX B is consistent and  

has an infinite number of solutions in terms ( )n r arbitrary constants. 

iii) If ( ) ( | )A A B   then the system AX B is inconsistent i.e. it has no solution at all. 

Procedure to find the solution of linear system non-homogeneous equations using rank method: 

i) Write the given system in the form AX B  

ii) Write the augmented matrix[ | ]A B  

iii) Reduce the augmented matrix [ | ]A B  into echelon form and then solve for the unknowns by back 

substitution. 

Solution of system of homogeneous linear equations: 

Consider the homogeneous system 0AX   in n unknowns 1 2, ,..., nx x x , where A is coefficient matrix  

i) If ( )A r n    (Number of unknowns) then the system 0AX  has a trivial solution (zero solution). 

ii) If ( )A r n    (Number of unknowns) then the system 0AX   has an infinite number of non trivial  

     solutions in terms ( )n r arbitrary constants. 

Note: (i) The homogeneous system 0AX   always has a solution 

          (ii) The homogeneous system 0AX   has a non-trivial solution if 0A  

Gauss Elimination Method: This method solves a given system of n  equations in n  unknowns 
by transforming the coefficient matrix, into an upper triangular matrix and then solve for the 
unknowns by back substitution. 
Consider a system of 3 equations in 3 unknowns  

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

  

  
  

a x a x a x b

a x a x a x b

a x a x a x b

 

The above system can be written as  . . . (1)AX B   

Consider augmented matrix  
111 12 13

21 22 23 2

31 32 33 3

 

|    

 

 
   
  

ba a a

A B a a a b

a a a b
 

In this method the coefficient matrix A  is brought to an upper triangular matrix by elementary 
row operations. The augmented matrix takes the following form 

                                

 
111 12 13

22 23 2

33 3

 

| 0    

0 0  

 
   
  

dc c c

A B c c d

c d

 

Then the solution is obtained by back substitution. 
Gauss-Jordan Method: This method is modification of Gauss elimination method. In this 

method the coefficient matrix A  the system of equations AX B  is brought to an identity matrix 
by elementary row operations.   
The augmented matrix takes the following form 
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 
1

2

3

 1 0 0

| 0 1 0  

0 0 1

 

   

  

 
   
  

A B

l

l

l

 

Then the solution is obtained without the necessity of back substitution. 
LU-Decomposition Method: Consider a non-homogeneous system of 3 equations in 3 
unknowns  . . . (1)AX B   

A non-singular matrix A is said to have a triangular factorization or LU-Decomposition if A can 
be expressed as the product of a lower triangular matrix L with ones on its main diagonal and an 
upper triangular matrix U . . . (2). .,  A LUi e  

For 3,n we have 3 3 3 3 3 3  A L U  

  

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

  . .,

1 0 0

 1 0 0

1 0 0

     
          
          

i e

a a a u u u

a a a l u u

a a a l l u
 

The condition for non-singularity of A implies that 0 for all .ii iu  

Substituting (2) in (1), we get  . . . (3)LUX B  
Put . . . (4)Y UX then (3) becomes  . . . (5)LY B  
Solve first (5) forY using forward substitution and then solve (4) for X using backward 
substitution. 
 
Multiple Choice Questions:  
 

1. If the rank of the matrix

1 2 3

2 7

3 6 10

 
   
  

A p is 2 then ......p                        

        A)  2          B) 3   C)  4            D)  3  
    Answer: A  

2. A real matrix ij n n
A a


    is defined as .  ,ija i j i j   then rank of A is...... 

    

        A)
 

1n              B)
 
n

 
             C)

 
1

 
        D)

 
2n

 
 

    Answer: C 

3. If A  is a 3 4  matrix such that the system AX B  is inconsistent then the highest possible  

    rank of A will be..... 
       A) 1  B) 2    C) 3    D) 4      
       Answer: B 

4. If 
20 20

   ijA a be a matrix such that  min , ;  , 1,2,....20. ija i j i j Then the rank of .....A  

      A) 19    B)10                          C) 20                      D) 1 
     Answer: C 
5. The system of equations 3 4 3,  2 3 2,6 5 3         x y z x y z x y z  have an infinite    

    number of solutions for value of  given by 

A) 7                       B) 7                         C) 5                            D) 5  
       Answer: D 
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6. If A  and B  are non-singular matrices of order n  then which of the following statement is not true  

   A) det( ) det( ) det( )AB A B    B)  det  det( )TA A   

   C) det( ) det( ) det( )  A B A B   D)  1det  1 AA  

       Answer: C 

7. If a matrix A is decomposed into its symmetric part 

2 1 1

1 1 5

1 5 2

 
   
  

P and skew-symmetric part   

    

0 0 2

0 0 1

2 1 0

 
   
  

Q  then .......A       

   A) 

2 1 3

1 1 4

1 6 2

 
 
 
  

  B) 

2 1 2

1 1 4

1 4 2

 
 
 
  

 C) 

2 1 1

1 1 2

1 6 0

 
 
 
  

 D) 

1 1 1

1 0 4

1 6 2

 
 
 
  

       

Answer: A 

8. If 4 3 4 3 2 3, ,X Y P   are three non-zero matrices then order of the matrix   1 T
T TP X Y P

 
  

is..... 

     A) 3 4                  B) 4 3                  C) 2 2                  D) 3 3  
   Answer: C 

9. Suppose 1
5

3 4

3

 
  

 
M

x
is a matrix such that and 1TM M then .....x    

A) 4    B) 4    C) 5     D) 5  

  Answer: B 

10. In solving system of equations AX B by Gauss-Jordan method, the coefficient matrix Ais  
     reduced to ………… matrix. 
 

A) Identity  B) Diagonal   C)Upper triangular  D) Lower triangular 
  Answer: A 

11. If the system
2

0

0 1 1 0

0 0 1 0

k k k x

k k y

k z

     
            
          

has only one linearly independent solution then .....k   

      A) 0,1    B) 0, 1                          C) 1, 1                      D) 0,  1, 1  
     Answer: B 

12. The determinant of the matrix 

1 2 0 0

3 4 0 0

0 0 4 3

0 0 2 1

 
 
 
 
 
 

P is …..  

A) 1   B) 2     C) 3     D) 4  
  Answer: D 
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UNIT-II: Eigen Values and Eigen Vectors 

Linear Transformation: Consider a set of n  linear equations 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

...

...

...........................................

...

n n

n n

n n n nn n

y a x a x a x

y a x a x a x

y a x a x a x

    
    


    

   ….… (1) 

Let 

1

2 ,
...

n

y

y
Y

y

 
 
 
 
 
 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 

and 

1

2

...

n

x

x
X

x

 
 
 
 
 
 

 

Then set of n equations (1) can be represented as ...(2)Y AX , which transforms the set of n  variables 

1 2( , ,.., )nx x x  into the set of n  variables 1 2( , ,..., ).ny y y Thus (2) is a transformation which transforms X

into .Y Here A is known as the matrix of the transformation. 
 

The transformation Y AX is said to be  

i) linear if 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ,A c X c X c AX c AX c Y c Y     where 1 2,c c are constants. 

ii) regular if A is non singular matrix i.e., 0A   

iii)  orthogonal if A  is orthogonal matrix i.e., 1 TA A   

The inverse transformation of Y AX is given by 1 .X A Y  

Eigen values and Eigen vectors: Let A  be an n n  matrix.  Suppose the linear transformation Y AX  

transforms X into a scalar multiple of itself i.e., AX Y X  then the scalar  is known as the eigen 
value or characteristic root and the corresponding non zero vector X  is known as the eigen vector or 

characteristic vector of .A  

Example. Let
5 4

1 2
A

 
  
 

, 1

1

1
X

 
   

, 2

2

1
X

 
  
 

 

Now 1 1 1

5 4 1 1 1
1

1 2 1 1 1
AX X

       
                   

 

1 1   is the eigen value of A corresponding to the eigen vector 1

1

1
X

 
   

 

Now  2 2 2

5 4 2 14 7
2

1 2 1 4 4
AX X

       
          
       

 

2

2

1
X

 
   

 
 is not an eigen vector of A   

Characteristic equation: If  is an eigen value of A  corresponding to the eigen vector X , then

AX X AX IX   

                   0AX IX    

                   ( ) 0A I X    

Thus 0A I  is known as the characteristic equation of .A  
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Note: i) The roots of characteristic equation of A are the eigen values of .A  

ii) If all the n eigen values of A are distinct, then there correspond n  distinct linearly independent eigen  
     vectors 

iii) The algebraic multiplicity of an eigen value  is its order as a root of the characteristic equation  

    ( i.e., if   is repeated m times then its algebraic multiplicity is m ) 
iv) The geometric multiplicity of is the number of linearly independent eigen vectors corresponding  

     to . 

Procedure to find eigen values and eigen vectors of A : 

i) Solve the characteristic equation 0A I   for the eigen values 1 2, ,..., .n    

ii) For a specific eigen value ,i solve the homogeneous system ( )iA I X O  , then we get the eigen 

vector of A  corresponding to i  

Note: The characteristic equation of 
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
   
  

is 0A I   

11 12 13

21 22 23

31 32 33

. .,  0











i e

a a a

a a a
a a a

  

            

   3 2tr( ) Sum of the minors of principal diagonal elements of det( ) 0      A A A  

            22 23 11 13 11 123 2
11 22 33

32 33 31 33 21 22

( ) det( ) 0  
 

        
 

a a a a a a
a a a A

a a a a a a
 

Properties of Eigen values and Eigen vectors:  

Property 1: Any square matrix A and its transpose TA have the same eigen values. 
Property 2: The eigen values of a triangular matrix are just the diagonal elements of the matrix.  
Property 3: The eigen values of a diagonal matrix are its diagonal elements 
Property 4: The sum of the eigen values of matrix A  is trace of A   
Property 5: The product of the eigen values of a matrix A  is equal to its determinant. 

Property 6: If  is an eigen value of a matrix A  then 1
  is an eigen value of 1A  . 

Property 7: If  is an eigen value of an orthogonal matrix A  then 1
  is also its eigen value. 

Property 8: If  1 2, ,..., n    are the eigen values of the matrix A  then mA  has the eigen values 

1 2, ,...,m m m
n    ( m  being a positive integer) 

Property 9: If 1 2, ,..., n    are the eigen values of matrix A  then 1 2, ,..., nk k k      are the eigen 

values of A kI . 

Property 10: If  is an eigen value of a non singular matrix ,A then 
A

  is an eigen value of the matrix

adj A . 

Property 11: The eigen values of an orthogonal matrix are of unit modulus. 
Property 12: The eigen values of a Hermitian matrix are real. 
Property 13: The eigen values of a Skew-Hermitian matrix are either zero or purely imaginary. 
Property 14: The eigen values of an unitary matrix have absolute value 1. 
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Cayley-Hamilton theorem: Every square matrix satisfies its own characteristic equation i.e., if the 

characteristic equation of a n th order square matrix A  is 1 2
1 2 1..... 0n

n n n
n k k k k   

      

then 1 2
1 2 1.....n

n n n
nA k A k A k A k I O

        

Similar Matrices: Let A  and B  be square matrices of same order. The matrix A  is said to be similar to 

the matrix B  if there exists a non-singular matrix P such that 1A P BP  or PA BP  

Note: If two matrices are similar, then they have the same characteristic equation and hence the same 
eigen values. 

Example: Show that the matrices 
5 5

2 0
A

 
 
 




 and 
1 2

3 4
B

 
 
 




 are similar to each other 

Solution. The given matrices are similar if there exists a non-singular matrix P such that PA BP  

Let 
a b

P
c d
 
 
 

 be a matrix such that PA BP  

. .,  
5 5 1 2

2 0 3 4
i e

a b a b

c d c d
       

       
        

 

5 2 5 2 2

5 2 5 3 4 3 4

a b a a c b d

c d c a c b d
   

    
   

  
    

 

Equating the corresponding elements, we obtain  
5 2 2 4 2 2 0  . . . ( )a b a c a b c i       ; 5 2 5 2 0 . . . ( )a b d a b d ii      ; 

5 2 3 4 3 2 0 . . . )c d a c a c d iii        ; 5 3 4 3 5 4 0 . . .( )c b d b c d iv        

Solving the above equations, we get  1,  1,  1,  2.a b c d     

 ,
1 1

1 2
P

 
  

 
 which is a non-singular matrix.  

Hence the matrices A and B are similar to each other 
Diagonalization of a matrix: 
A square matrix A  is diagonalizable if it is similar to a diagonal matrix i.e., there exists a non-singular 
matrix P such that 1 ,P AP D  where D is a diagonal matrix. Here P is known as the modal matrix and  

D is known as the spectral matrix of A . Since similar matrices have the same eigen values, the diagonal 
elements of D are the eigen values of A . 

Theorem: A square matrix A of order n is diagonalizable if and only if it has n linearly independent eigen 
vectors. 
Note:  
1) A square matrix A of order n has always n linearly independent eigen vectors when its eigen values 

are distinct. 

2) For every eigen value of a matrix ,A the geometric multiplicity ( )   algebraic multiplicity ( ).  

3) A square matrix A  is diagonalizable if and only if the geometric multiplicity is equal to the algebraic 

multiplicity for every eigen value of .A  
Procedure to diagonalization and calculation of powers: 
i) Find the eigen values and the corresponding eigen vectors of A . 

ii) If the geometric multiplicity is equal to the algebraic multiplicity for every eigen value of ,A  then 

form the modal P by taking the eigen vectors as columns. 

iii) Calculate 1.P  

iv)  Find the spectral matrix 1D P AP . . . (1) 

v) Premultiplying (1) by P and post-multiplying (i) by 1,P we get 1PDP A  . . .  (2) 
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From (2), we obtain 1 1 12 2( )( )A A A PDP PDP PD P       

            Similarly, 1 13 3 4 4,  ,....A PD P A PD P    

In general, 1n nA PD P  for any positive integer .n  

Note: For any matrix polynomial ( ),Q A we have 1( ) ( )Q A PQ D P  

Quadratic Form: A homogeneous expression of second degree in 2( )n 
 
variables is called a quadratic 

form. i.e., An expression of the form 
1 1

 ... (1),
n n

ij i j
i j

Q a x x
 

 where ij jia a  are real, is called a 

quadratic form in n variables 1 2, ,..., .nx x x
  

 Every quadratic form corresponding to a symmetric matrix A
 
can be expressed in matrix form as 

,TQ X AX
 
where A is known as the matrix of the quadratic form and  1 2, ,..., .

T

nX x x x  

Examples: i) 2 22 4 9x xy y  is a quadratic form in two variables ,x y
 

     ii) 2 2 2
1 2 3 1 2 1 3 2 32 13 2 6 8x x x x x x x x x    

 is a quadratic form in three variables 1 2 3, , .x x x
         

 

 The real symmetric matrix A of the QF 2 2 2
11 1 22 2 33 3 12 1 2 23 2 3 13 1 3

TX AX a x a x a x a x x a x x a x x       

is given by 

     
     
     

2

1 11 12

2

2 12 22

2
333

1
1 2 1 3 132

1
1 2 2 3 232

13 231 3 2 3

1 1
2 2

1 1 1
2 2 2

1 11 1
2 22 2

1
2 ( ) ( )

( ) ( )

( ) ( )

coeff x oeff x x

coeff x

coeff x

c coeff x x a a

A oeff x x oeff x x a a

a acoeff x x coeff x x

a

a

a

c c

   
       
      

 

Example: Write down the symmetric matrix of the following quadratic forms:  

a) 2 24 5x xy y    b) 2 2 2
1 2 3 1 2 1 3 2 33 2 2 6 4x x x x x x x x x        

Solution: a) Let 2 24 5TX AX x xy y    

The matrix of the quadratic form is
 1 2

2  5
A

 
   

 
b) Let 2 2 2

1 2 3 1 2 1 3 2 33 2 2 6 4TX AX x x x x x x x x x       

The matrix of the quadratic form is

 1  1 3

 1  3  2

3  2 2

A

 
   
     

Example: Write down the quadratic form corresponding to the following symmetric matrices:   

   a)
1   2

2 3
A

 
   

   b)

1 3 5

3 2 0

5 0 4

A

 
   
     

Solution: a) Let TQ X AX  be the required quadratic form, where  1 2

T
X x x  

     1
1 2

2

1   2

2 3
T x

Q X AX x x
x

  
        

2 2
1 2 1 23 4x x x x    

b) Let TQ X AX  be the required quadratic form, where  1 2 3

T
X x x x  

    
1

1 2 3 2

3

1 3 5

3 2 0

5 0 4

T

x

Q X AX x x x x

x

   
         
       

2 2 2
1 2 3 1 2 1 32 4 6 10x x x x x x x      



 

Dept. of Mathematics           Page 15 of 28 
 

Canonical Form: The canonical form or sum of the squares form of a quadratic form TQ X AX  in n 

variables 1 2, ,  . . . , nx x x
 is another quadratic form 2 2 2

1 1 2 2 . . . ,T
n nQ Y DY y y y         which is 

obtained by an orthogonal transformation  .X PY  Here P  is known as normalized modal matrix and D
is known as spectral matrix whose elements are the eigen values of matrix .A  
Rank, Index, Signature and Nature of a Quadratic Form: 

If the quadratic form (QF) TQ X AX  is reduced to the canonical form (CF) ,TQ Y DY  then  

1. Rank of a QF is the number terms in CF or the number of non-zero eigen values of the matrix A  
2. Index of a QF is the number positive terms in CF or the number of positive eigen values of the matrix
A .  

3. Signature of a QF is the excess number of positive terms over the number of negative terms in CF or 
the excess number of positive eigen values over the number of negative eigen values of the matrix A . 

4. Nature of a QF: A quadratic form TQ X AX is said to be  

i) Positive definite if all the eigen values of A are positive. 
ii) Positive semi-definite if all the eigen values of A  are non-negative ( 0)  and at least one eigen value 

is 0  
iii) Negative definite if all the eigen values of A are negative. 
iv) Negative semi-definite if all the eigen values of A  are non-positive ( 0)  and at least one eigen value 

is 0  
v) Indefinite if some eigen values of A are positive and some are negative. 

 The norm or length of a vector 1 2[ , ,  . . . , ]T
nX x x x  is denoted by X

 and is defined as 

2 2 2
1 2 +. . . T

nX X X x x x     

 Three vectors 1 2,X X and 3X are said to be pair wise orthogonal if 1 2 2 30, 0T TX X X X  an

3 1 0.TX X   

 The linearly independent eigen vectors corresponding to the distinct eigen values of a symmetric 
matrix A are always pair wise orthogonal.  

Procedure to reduce Quadratic Form into Canonical Form by orthogonal transformation: 

Let TQ X AX be the QF in n variables 1 2, ,  . . . , .nx x x  

Step1: Identify the symmetric matrix A associated with the  1 2, where , ,  . . . ,
TT

nQ X AX Y x x x   
Step 2: Find the eigen values of A , say, 1 2, , ..., n    

Step 3: Find the corresponding eigen vectors 1 2, ,..., nX X X  such that they are pair wise orthogonal 

Step 4: Find the normalized modal matrix 1 2

1 2

ˆ , , . . ., ,n

n

XX X
P

X X X

 
  
  

which is always orthogonal. 

Step 5: Let ˆ  . . . ( )X PY i be the orthogonal transformation which transforms the given QF into CF, 

where P̂ is known as the matrix of the transformation. 

Step 6: By diagonalization,  1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ . . . ( )  is orthogonal, .T TD P AP P AP ii P P P     

       ˆ ˆ ˆ ˆ  T T
T TX AX PY PY Y P PYA A      By  ( )i  

                ˆ ˆTTY P PYA  

              ˆ ˆTTY P P YA  

             
TY DY                By  ( )ii
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Step 7: The required CF is 2 2 2
1 1 2 2 ,...T

n nY DY y y y      where  1 2, ,  . . . ,
T

nY y y y  

 

Multiple Choice Questions:  

1. A real matrix ij n n
A a


    is defined as 

for

for

  ,  
,

0  ,  ij

i j

i j

i
a


 

 then trace ( ) .....A   

    A)  ( 1)n n                         B) ( 1)n n                    C) 
1( )

2
n n

               D) 
1( )

2
n n

 
Answer: D 

2. If the matrix
4 1

2 3

 
  
 

A is similar to matrix ,B then sum of the eigen values of .....B  

     A)  5                        B) 6                   C) 7                D) 9
 

Answer: C 
3. Which of the following set represents the spectrum of a unitary matrix? 

    A)  1,  1 i                B)  1
2 2

1,  i                 C)  1,  1 i           D)  1 ,  1i i  
 

Answer: B 

4. Let a and b be two real numbers such that 22 1.a b The eigen values of the non-singular  

     matrix 
  

   

a b
A

b a
 are …….       

     A)1, 1       B) 2, 2          C) , a a  D) , b b  

   Answer: A 

5. If 

1

1

2

 
 
 
  

 is the eigen vector of matrix

1 0 1

1 2 1

2 3k

A

 
   
  

corresponding to the eigen value 3 then .....k   

     A) 1                       B) 2                           C) 1                           D) 2 

       Answer: D 

6. If 1, 1, 2 are eigen values of a matrix 3 3A then  2trace .....3 5  A A I          

     A)10   B) 12            C)15   D) 18  
Answer: C 

7. If 2 2A   is a non-singular matrix such that trace ( ) 5A   and trace  2 9A   then det( ) .....A   

     a) 7            b) 8                        c) 5                           d) 6 
   Answer: B 

8. The matrix

1  0  0

0  3 1

0 1  3

 
   
  

A has three distinct eigen values and one of its eigen vectors is 

0

1

1

.
 
 
 
    

   

Which one of the following can be another eigen vector of  ?A  

B) 

1

1

0

 
 
 
  

    B) 

0

1

1

 
 
 
  

   C) 

1

0

1

 
 
 
  

   D) 

1

1

1

 
 
 
  

 

  Answer: B 
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9. If 
1 1

1 1

 
  
 

M then 8 7 6 5 4 3 22 2 4 3 6 2 .....      M M M M M M M  

     A) M        B) 2M    C) 3M   D) 4M  
  Answer: D 

10. If 
3

3  4

 
  
 

P
x

is a non-singular matrix with repeated eigen value and x   then .....x  

     A) 2        B) 10    C) 4   D) 12  
  Answer: B 

11. If 1, 2, 3 are eigen values of a matrix 3 3A then 1 ..... A          

     A)  21
6 5 2 I A A       B)  21

6 5 2 I A A          C)  21
6 5 2 I A A  D)  21

6 5 3 I A A  

   Answer: C 

12. If ,p q  are index and signature of the QF 2 2 22 3 7x y z  respectively then .....p q   

    A)  0                            B) 2                                C) 3                                 D)  4 
  Answer: A 
 

UNIT-III: Sequences & Series 
 

Sequence: A function : u   is called a sequence of real numbers and is denoted by  nu or nu . 

Thus  1 2 3, , ,..., ,... nn u u u uu  

Here nu is called the thn term of the sequence nu and 1 2 3, , ,  . . .u u u are called respectively first term, 

second term, third term etc., 

 The sequence  nu denoted by   n ku  is called a constant sequence. 

 A sequence  nu is said to be bounded below if there exists 1k  such that 1  ,  nk u n  where 

1k is called the lower bound of the sequence nu .  

 If 1k is a lower bound of the sequence  nu then any number less than 1k is a lower bound of  .nu   

 If  nu is bounded below, the greatest among the lower bounds of  nu is called the greatest lower 

bound (g.l.b) of  .nu   

 A sequence  nu is said to be bounded above if there exists 2k  such that 2 ,  n ku n  where  

2k is called the upper bound of the sequence nu .  

 If 2k is an upper bound of the sequence  nu then any number greater than 2k is an upper bound of 

 .nu   

 If  nu is bounded above, the lowest among the upper bounds of  nu is called the least upper bound 

(l.u.b) of  .nu   

 A sequence  nu is said to be bounded if there exists numbers 1 2&k k such that 1 2 ,   nk ku n     

otherwise  nu is said to be unbounded. 

 A sequence  nu is said to be monotonically increasing if 1 ,  nnu u n  
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11 2 3 ..... ...... .,       n ni e u u u u u    

 A sequence  nu is said to be monotonically decreasing if 1 ,  nnu u n  

11 2 3 ..... ...... .,       n ni e u u u u u  

 A sequence  nu is said to be monotonic if it is either monotonically increasing or monotonically 

decreasing. 

Limit of a sequence: A real number l  is said to be limit of  nu if to each 0,  there exists m 

such that .,  n l n mu   

If l is the limit of  ,nu then we write lim



n n lu  

Note:  
(i) A sequence may have a unique limit or may have more than one limit or may not have a limit. 
(iii) Limit of a sequence if it exists is unique 

(iv) If the two sub-sequences  2nu and  2 1nu of sequence  nu converges to the same limit l then 

 nu also converges to l  

(v) Every convergent sequence is bounded. But a bounded sequence need not be convergent. 

For Example: The sequence ( 1) 1,1, 1,1, 1,....    n is bounded but not convergent. 

Convergence, divergence and oscillation of a sequence: 

 A sequence  nu is said to be convergent if it has a finite limit lim. .,  (finite value)



n

ni e lu  

For example: The sequence 1
2n is convergent   

        

1
2

 lim 0



n

n  

 A sequence  nu  is said to be divergent if it has an infinite limit lim. .,  or 


   
n

ni e u  

For example: The sequence 2n is divergent   2

        
 lim


 

n
n  

 If  sequence  nu  neither converges to finite value nor diverges to   is said to be an oscillatory  

 A bounded sequence which does not converge is said to  oscillate finitely  

For example: The sequence ( 1) n oscillates finitely since it is a bounded sequence and 

lim
  1,   is even

( 1)
1,   is odd




 n

n n

n
 

 An unbounded sequence which does not diverge is said to  oscillate infinitely  

For example: The sequence ( 1) n n oscillates infinitely since it is an unbounded sequence and  

lim  
+ ,   is even

( 1)
,   is odd




 n

n n
n

n
 

Infinite Series: If  nu is a sequence of real numbers, then the expression 1 2 3 ..... .....    nu u u u   is 

called an infinite series i.e., A series is a sum of the terms of the sequence. 

The infinite series 1 2 3 ..... .....    nu u u u   is usually denoted by 
1





n

nu or more briefly, by nu
 

Partial sums: If  nu is an infinite series, then 1 2 3 .....   n nS u u u u   is called the thn partial sum  
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of . nu Thus, the thn partial sum of an infinite series is the sum of the first n terms.  

 To every infinite series , nu there corresponds a sequence  nS of its partial sums, where 

1 2 3, , , .....S S S are the first, second, third, …partial sums of the series 

Behaviour of an infinite series: An infinite series
  nu converges, diverges or oscillates (finitely or 

infinitely) according as the sequence  nS of its partial sums converges, diverges or oscillates (finitely or 

infinitely) 

  nu is convergent if lim finite



n

nS  

  nu is divergent if lim  or 


   
n

nS  

  nu oscillates finitely if  nS is bounded and not convergent 

  nu oscillates infinitely if  nS is unbounded and not divergent 

Necessary condition for convergence: If a series  nu is convergent, then lim 0



n

nu
 

Preliminary test for divergence:
 
If lim 0




n
nu  then the series  nu is divergent 

 A positive term series either converges or diverges to   

 The geometric series  2 3

0

1 ..... 




    
n

n r r rr   

(i)  converges if 1 1  r                   (ii) diverges if  1r  
          (iii) oscillates finitely if 1 r           (iv) oscillates infinitely if 1 r    

 The p harmonic series 1 1 1
1 2 3

1 ...    p p p pn   converges if 1p  and diverges if 1p   

Some useful standard limits: 

(i) 1lim 0  for  0



n kn

k
        

(ii) 
1

lim 1



n

nn
   

(iii) lim 0 for 1 1


   
n

nx x  

(iv)  1lim 1


 
n

n
n e

         
(v)  lim 1 for any  


 

n

kk n
n e k  

Series of positive terms: If all the terms of the series nu are positive i.e., 0 , n nu then nu is 

called the series of positive terms.      
 Comparison test for series of positive terms: Comparison test for series of positive terms consists of 

“comparison” between a given (unknown) series  nu  and a known auxiliary series  nv whose 

nature is known.  

Comparison test for convergence: Let  nu  and  nv be two series of positive terms
 
such that

 n n nu v  and nv  converges then nu also converges 

Comparison test for divergence: Let  nu  and  nv be two series of positive terms
 

such that 

 n n nu v  and nv  diverges then nu also diverges 

Limit form of the comparison test: Let  nu  and  nv be two series of positive terms such that 

lim  (finite) 0


 
n

n
n

lu
v then  nu  and  nv  both converge or diverge together 

Note: Most often the geometric series 
0





n

nr and the p harmonic series 
1 pn are chosen as a known  
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auxiliary series nv for comparison in case of above three comparison tests.  

D’Alembert’s Ratio Test: Let  nu be a series of positive terms such that
1

lim  (finite)
 


n

n
n

lu
u then 

 nu is said to be (i) convergent if 1l
     

     (ii) divergent if 1l
  

      

                     and    (iii) test fails when 1l
 Note: Apply Raabe’s test when Ratio test fails 

Raabe’s Test: Let  nu be a series of positive terms such that  
1

lim  1  (finite)
 


n

n
n

n lu
u then  

 nu is said to be  (i) convergent if 1l
     

      (ii) divergent if 1l
  

      

                     and    (iii) test fails when 1l
 

Cauchy’s nth Root Test: Let  nu be a series of positive terms such that  1/
lim  (finite)



n

n
n lu then 

  nu is said to be  (i) convergent if 1l
     

      (ii) divergent if 1l
  

      

                     and    (iii) test fails when 1l
 

Note: Apply Cauchy’s nth root test when nu involves nth powers of itself as whole 

Cauchy’s Integral Test: Let ( ) n f nu be a series of positive terms such that ( )f n decreases as n

increases and 
1

( )


 f x dx l then  nu is said to be  (i) convergent if l
 
is finite 

                                                                   (ii) divergent if l
 
is infinite      

Alternating series: A series in which the terms are alternate positive and negative is called an alternating 

series. Thus, the series    1 1

1 2 3 41 ...... 1 ......,
 

       n n
n nv v v v v v   where 0 , n nv is an 

alternating series. 

Leibnitz’s Test: An alternating series of the form 11( )  n
nv is said to be convergent if 

 nv  is decreasing i.e., 1   n n nv v  and lim 0


n
n

v  

 An alternating series nu is said to be absolutely convergent if nu is convergent 

 An alternating series nu is said to be conditionally convergent if nu is convergent while

nu is divergent 

 Every absolutely convergent series is convergent. But a convergent series need not be 
absolutely convergent. 

 
Multiple Choice Questions:  
 

1. Which of the following sequence is not bounded?  

    A)   1
n                      B)  1 1( )  n               C)  1( ) n                D)  1 nn

 
Answer: D 
2. Which of the following statement is FALSE? 
  A)  Every convergent sequence is bounded               B) Every bounded sequence is convergent                      

  C) The sequence  1( ) n oscillates finitely             D) The sequence   11
n

n is convergent 
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Answer: B 
3. Which of the following series is convergent?  

    A)  1 n                         B)  3
2

n
                  C) 1 n                D)  2

3
n

 
Answer: D 

4. The thn term of the series      31 2 31 2
74 10 .......     

     A)   5 1
nn

n                   B)  3 1
nn

n                   C)  2
nn

n                D)  1
5 1



nn
n  

Answer: B 

5. If  nv be the auxiliary series chosen to test the convergence of the series  1 1sin n n then ....nv  

    A) 1
n               B) 1

n                C) 2
1
n         D) 1

n n  
Answer: C 

6. Which of the following test is best suited to test the convergence of the series  
2

11



n

n  

     A) Ratio test      B) Raabe’s test         C) Comparison test D) Cauchy’s nth root test 
   Answer: D 

7. The series 1
1
 n

converges if …….     

    A) 1                        B) 2                            C) 1                             D) 2   
       Answer: B 

8. The geometric series  2 n
……    

     A) converges B) diverges     C) oscillates finitely  D) oscillates infinitely 
     Answer: D 

9. Which of the following test is best suited to test the convergence of the series 
 
 !

2
!

2 n
n  

     A) Ratio test      B) Leibnitz test         C) Integral test D) Cauchy’s nth root test 
   Answer: A 

10. The series 
4 710 (3 1)

12 3
    

    n
n is convergent if …… 

     A) 3x     B) 1
3x                   C) 1

2x                    D) 1
2x

 
   Answer: B 
11. Which of the following series is absolutely convergent? 

     A) 
1( 1) 

n

n     B) 
1( 1) 

n

n                   C) 
1

2
( 1) 

n

n
                   D) 

1( 1)
14


n

n  
   Answer: C 
12. Which of the following series is conditionally convergent? 

     A) 
1( 1) 

n

n     B) 1

1( 1)

2 

 n

n
                  C) 

1

2
( 1) 

n

n
                   D) 3

1( 1)

1



n

n  

   Answer: B 

 
 
 

UNIT-IV: Beta & Gamma Functions and Mean Value Theorems 
 

Beta & Gamma Functions: Many integrals which cannot be expressed in terms of elementary functions 
can be evaluated in terms of Beta and Gamma functions.  
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Gamma Function: If 0n  , then the definite integral 1

0

x ne x dx
    is called the gamma function and it is 

denoted by ( )n and read as gamma n .     

                               Thus 1

0
( ) x nn e x dx

      

Properties: 
i) (1) 1  

ii) ( ) ( 1) ( 1) [Reduction Formula of ( )]n n n n       

iii) ( ) ( 1)! ,n n   if n is a positive integer 

iv)  ( ) 1 2 3( )( )( )....( ) ( ),n n n n n k n k        where n is a positive fraction and 0 ( ) 1n k    

v) 
 

    
( )

1
,

1 2 ...
n

n k

n n n n k


  


  
 where n  is a negative fraction and 10 ( ) 1n k     

vi) ( )n is not defined for 0, 1, 2, 3,......n      

vii)  1
2   

Beta Function: If , 0m n   then the definite integral 
1

0

1 11( )m nx x dx  is called the beta function and is  

denoted by  ,m n
 

1

0

1 1( ) 1. .,  , ( )m ni e m n x x dx     

Properties: 

i) Symmetry of Beta function:    , ,m n n m   

ii) Beta function in terms of trigonometric ratios:  
/2 2 1 2 1

0
2, sin cosm n dm n


       

Note:  /2

0

1 1
2 2

1
2sin cos ,p q p q

d


     
  

Others forms of Beta Function:  

Form -I:  
1 1

0 0(1 ) (1 ),
m n

m n m n
x x
x xm n dx dx

  
      

Form -II:  
 

1 1 1

0 1
,  

m n

m n
x x

x
m n dx

 



 

 

Form -III:   1 1
1

1
, ( ) ( )

( )

b m n
m n a

m n x a b x dx
b a

  
   

 
 

Relationship between Beta and Gamma Functions:

 
  ( ) ( ), ( )

m nm n m n    
 

Result: ( ) ( 1) (0 1)sinn n nn

     

 

Example: (i)    31
4 4 2  

   
(ii)    1 2

3 3
2
3
  

     
(iii)    51

6 6 2  
 

Mean Value Theorems:  

 A function ( )f x is said to be continuous at a point x c if lim ( ) lim ( ) ( )
  

 
x c x c

f x f x f c  

 A function ( )f x is said to be continuous in the interval[ , ]a b if it is continuous at every point of 

[ , ]a b  

 A function ( )f x is said to be differentiable  at a point x c if 

( ) ( ) ( ) ( )
lim lim

  

  x c x c

f x f c f x f c
x c x c  

 A function ( )f x is said to be differentiable in the interval [ , ]a b if  
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(i) ( )f x is differentiable  at every point of ( , )a b  

(ii) 
( ) ( )

lim



x a

f x f a
x a and 

( ) ( )
lim




x b

f x f b
x b exist 

 If ( )f x is continuous in the interval[ , ],a b then the graph of ( ) f xy is a continuous curve 

for the points in [ , ]a b  

 If ( )f x is differentiable in the interval[ , ],a b then there exist a unique  tangent to the curve 

( ) f xy at every point in[ , ]a b  

Rolle’s Theorem: Let a function :[ , ]f a b be such that 

(i) ( )f x is continuous in the interval[ , ]a b  

(ii) ( )f x is differentiable in the interval ( , )a b   and 

(iii) ( ) ( )f a f b then there exist at least one value ( , )c a b such that ( ) 0 f c  

Geometrical Interpretation: Under these assumptions of Rolle’s theorem, there is at least one point on 

the curve ( ) f xy where the tangent is parallel to the x axis  

Lagrange’s Mean Value Theorem: Let a function :[ , ]f a b be such that 

(i) ( )f x is continuous in the interval[ , ]a b  and 

(ii) ( )f x is differentiable in the interval ( , )a b   then there exist at least one value ( , )c a b

such that 
( ) ( )

( )
  f b f a

f c b a  

Geometrical Interpretation: Under these assumptions of Lagrange’s mean value theorem, there is at 

least one point on the curve ( ) f xy where the tangent is parallel to the chord joining the end 

points  , ( )A a f a and  , ( )B b f b . 

Cauchy’s Mean Value Theorem: Let :[ , ]f a b  , :[ , ]g a b be two functions such that 

(i) ( )f x and ( )g x are continuous in the interval[ , ]a b   

(ii) ( )f x and ( )g x are differentiable in the interval ( , )a b   and  

(iii) ( ) 0  ( , )  g x x a b then there exist at least one value ( , )c a b such that 

( ) ( ) ( )
( ) ( ) ( )




f c f b f a
g c g b g a  

Taylor’s Theorem (Generalised Mean Value Theorem): Let a function :[ , ]f a b be such that 

(i) 1( ) ( )nf x is continuous on[ , ]a b  

(ii) 1( ) ( )nf x is differentiable on ( , )a b and p  then there exist a point ( , )c a b such that 

( 1)
2 3 1

11! 2! 3! ( )!
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ..... ( )



           n

n

nn
b a b a b a b a

f b f a f a f a f a f a R  

 

where ( )

1( )!
( ) ( )

( )



  n

p n p

n n p
b a b c

f cR is called the remainder after n  terms 

Suppose 0nR as ,n then  
2 3

1! 2! 3! !
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ..... ( ) .....
           

n
n

n
x a x a x a x a

f x f a f a f a f a f a   (1), 

which is called Taylor’s series expansion of ( )f x about x a  
Put 0a in (1), we get  
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2 3

1! 2! 3! !( ) (0) (0) (0) (0) .... (0) ....        
n n

n
x x x xf x f f f f f , which is called Maclaurin’s 

series expansion of ( )f x  

 
Multiple Choice Questions:  

1.  1
2 .........         

        A)
 
          B)

 
2 

 
     C)

 
2 

 
        D)

 


 
 

    Answer: C 

2. 
1 5 3

0
(1- ) ........ x x dx                        

        A)  (6,4)          B) (5,3)   C)  (7,5)            D)  (6,3)  
    Answer: A  

3. 
0

6 ......
   xx e dx  

       A) 4!  B) 6!    C) 5!   D) 7!     
     Answer: B 

4.    31
4 4 ........       

A) 2         B)  2    C) 2    D)  2  

        Answer: C 

5. 
10 18

300 1( )
.......

 
  x x

x
dx     

A) 0       B) 1       C) 2           D)3  

        Answer: A 

6.  1

0

31log ...... e x dx  

       A) 24   B) 6    C) 12    D) 10      
     Answer: B 

7. If 4 2( ) 2  f x x x satisfies the conditions of Rolle’s theorem on [ ],a b  and 1 a then ....b  

        A) 2   B) 2        C) 1    D) 1  

       Answer: C 

8. The Lagrange’s mean value theorem is satisfied for 3( ) 5 f x x x  in [1,4]  at a value of ....x  

  

        A) 5    B) 6      C) 7   D) 11 

       Answer: C 

9. If 0  a b c then one of the roots of the equation 23 2 0  ax bx c  lies in the interval ….     

       A)  1,1   B)   0,1   
  
C)

 
 1, 2   D)    1, 0  

    Answer: B 

10. The value of ‘c’ of Cauchy’s mean value theorem for ( ) xf x e and ( ) xg x e in [2,6]  is   

      A ) 4     B) 5   C) 3.5    D) 3  
    Answer: A 

11. Which of the following theorem is known as higher mean value theorem? 

     A) Rolle’s theorem    B) Lagrange’s mean value theorem 
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     C) Cauchy’s mean value theorem  D) Taylor’s theorem 

   Answer: D 

12. Maclaurin’s series expansion of 1tan x is ….. 

       A)
3 5 7

5 73 ......   x x xx   B)
3 5 7

5 73 ......   x x xx
 

       A)
2 4 6

2 4 61 ......   x x x   B) 
2 4 6

2 4 61 ......   x x x  

      Answer: B 
 

UNIT-V: Functions of Several Variables 
 

Partial derivative: A partial derivative of a function of several variables is the ordinary derivative with 
respect to one of the variables when all the remaining variables are held constant. 

Let ( , )z f x y be a function of two variables , .x y  

 The derivative of z with respect to ,x treating y as constant, is called the partial derivative of 

z  with respect to x and is denoted by or   .
 xx
z z Thus 

0

( , ) ( , )lim
 

 



 

x

f x y f x yx
xx

z  

Similarly, the derivative of z with respect to ,y treating x as constant, is called the partial 

derivative of z  with respect to y and is denoted by or   .
 yy
z z Thus 

0

( , ) ( , )
lim
 







 
yy

f x y y f x yz
y  

Partial derivatives of second order, of a function ( , )f x y are calculated by successive 

differentiation. Thus if ( , )z f x y then  

   2 2 2 2

2 2  and   ,  ,             
            

      
   

       xx xy xy yyx x x y x y y x y x y yx y
z z z z z z z zz z z z  

Note: A function of 2 variables has 2 first order partial derivatives, 2
2 second order partial derivatives, 

2
3 third order partial derivatives and so on. 

Total derivative: Total differential of a function u of three variables , ,x y z is denoted by du and is 

defined as   
    u u u
x y zdu dx dy dz  

Chain rule: If ( , , ),u f x y z where , ,x y z are functions of a variable t  then the total derivative 

of u is defined as  (i) . . .  
    dydu u dx u u dz
x y zdt dt dt dt  

Corollary: If ,t x (i) becomes,   
    dydu u u u dz
x y zd x dx dx  

Differentiation of implicit function: If ( , ) f x y c be an implicit relation between x and y which 

defines as a differentiable function of ,x then 
 
   f f
x y

dy
dx  

Jacobians: Jacobians are functional determinants (whose elements are functions) which are very useful in  
transformation of variables from cartesian to polar, cylindrical and spherical coordinates in multiple  
integrals. 
Definition: If u  and v  are functions of two independent variables x and ,y  then the determinant

u u
x y

v v
x y

 
 
 
 

 is called Jacobian of ,u v  with respect to ,x y  and is written as 
( , )
( , )



u v
x y

 or  ,
,

u v
x yJ  
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Similarly, the Jacobian of , ,u v w  with respect to , ,x y z is 
( , , )
( , , )

u u u
x y z

u v w v v v
x y zx y z

w w w
x y z

  
  

   
  
  
  

  

Properties of Jacobians: 

i) If  
( , ) ( , )
( , ) ( , ) and  
u v x y
x y u vJ J

 
      then 1JJ    

ii) Chain rule of Jacobians: If  ,u v  are functions of ,r s  and ,r s  are functions of ,x y then

( , ) ( , ) ( , )
( , ) ( , ) ( , )
u v r s u v
r s x y x y

  
    

Functional Dependence: Let ( , ), ( , ) u f x y g x yv be two given differentiable functions of the two 

independent variables  and .x y Suppose these functions and  u v are connected by a relation ( , ) 0,F u v 
where  F  is differentiable. We say that  and u v  are functionally dependent on one another if 

, ,  and x y x yu u v v not all zero simultaneously. 

 If , ,u v w  be functions of three independent variables , ,x y z then , ,u v w  are functionally         

      dependent (related) if and only if 0
( , , )
( , , )
u v w
x y z


   

Maxima and Minima of functions of two variables: 
 A function ( , )f x y  is said to have a maximum value at ,x a y b   if ( , ) ( , )f a b f a h b k    for 

all positive or negative small values of  and .h k  

 A function ( , )f x y is said to have a minimum value at ,x a y b   if ( , ) ( , )f a b f a h b k    for 

all positive or negative small values of  and .h k  

Geometrically ( , )z f x y  represents a surface. The maximum is a point on the surface (hill top) from 

which the surface descends (comes down) in every direction towards the planexy   (Fig (a)). The 

minimum is the bottom of depression from which the surface ascends (climbs up) in every direction (Fig 
(b)).Besides these, we have such a point of the surface, where the tangent plane is horizontal and the 
surface looks like leather seat on horse’s back (Fig (c)) which falls displacement in certain directions and 
rises for displacements in another directions. Such a point is called a saddle point. 

                                
(a)                                                   (b)                                                         (c) 

Conditions for Maxima and Minima of functions of f(x, y): 

The necessary conditions for ( , )f x y to have a maximum or minimum at ( , )a b  are that         

                                           
( , ) ( , )

0, 0
f a b f a b

x y
 
    

Stationary point: The point ( , )a b  is called a stationary point if ( , ) 0, ( , ) 0x yf a b f a b   

Stationary value: ( , )f a b is said to be a stationary value of ( , )f x y  if ( , ) 0, ( , ) 0x yf a b f a b   

                                      i.e., the function is stationary at ( , )a b . 
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Extreme value: A maximum or minimum value of a function is called its extreme value. 
Working rule to find the maximum and minimum values of f(x ,y): 

1. Find and   
 
f f
x y and equate each to zero. Solve these as simultaneous equations in  and .x y  

     Let      1 1 2 2 3 3, , , , , ,....a b a b a b be the pairs of values and are called stationary points of ( , )f x y   

2. Calculate 
2 2 2

2 2, ,f f f
x yx y

r s t  
  

   at each of the stationary point. 

3. (i) If 2 0 and <0rt s r   at  1 1,a b  then f has a maximum at  1 1,a b  and  1 1max ,f f a b  

   (ii) If 2 0 and 0rt s r    at  1 1,a b  then f has a minimum at  1 1,a b  and  1 1min ,f f a b  

   (iii) If 2 0 rt s  at  1 1,a b  then f has neither maximum nor minimum at  1 1,a b  i.e.,  1 1,a b  

         is a saddle point. 

  (iv) If 2 0 rt s  at  1 1,a b , no conclusion can be drawn about maximum or minimum and it                  

         needs further investigation 

Similarly examine the pair of values    2 2 3 3, , , ,....a b a b one by one 

Lagrange’s Method of undetermined multipliers: Let ( , , )f x y z  be a function of three variables 

, ,x y z which are connected by the relation ( , , ) 0x y z   . . . .  (1) 

Consider the Lagrangian function ( , , ) ( , , ) ( , , ),F x y z f x y z f x y z   where  is the Lagrangian 

multiplier 

For maxima or minima of ( , , )F x y z , we have  

0 i.e., 0       . . . .  (2)

0 i.e., 0       . . . .  (3)     

0 i.e., 0       . . . .  (4)

fF
x x x

fF
y y y

fF
z z z













 
  

 
  

 
  

  

  

  

 

On solving (1),(2),(3) and (4),we can find the values of , ,x y z  and  for which ( , , )f x y z has stationary 

value. 
Note: This method gives us the stationary value of a given function. But we cannot determine the nature 
of stationary points. However, this can be decided by physical or geometrical considerations. 

 
Multiple Choice Questions:  

1. If 2 2 , z x y where sin ,  cos t te ex t y t then at 0 is .....  dz
dt t     

        A)
 
2          B)

 
4

 
     C)

 
6

 
        D)

 
8

 
 

    Answer: A 

2. If 
2 2 x yu e  then 

2
......  

u
x y       

        A)  xyu          B) 2xyu   C)  4xyu            D)  8xyu  
    Answer: C 

3. If cosxyye x  then 
dy
dx at (0,1) .....  

       A) 1  B) 1   C) 0    D) 2      
     Answer: B 

4. Let ( , ),w x y where ,x yare functions of .t  Then, according to chain rule, ....dw
dt  
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      A) 
 

  yd dx
t tdx dy     B) 

  
  dydx
x ydt dt       

     C) 
  dyd ddx

dx dt dy dt     D) 
   
    yx
x t y t      

     Answer: B 

5. If (1 ) (1 ),    u x y v y x then the value of 
( , )
( , )



u v
x y at &1  1 is ..... x y    

      A)1       B) 2   C) 3     D) 4 
     Answer: C 

6. If ,  
  x yx

y x yu v are functionally related then the functional relation between them is ….    

     A) 1
1

 u

uv       B) 
1
1

 v

vu     C) 
1
1

 vu v          D) 

1
1

 uv u  

     Answer: A 

7. If 2 2 3,  ,      x yu v y z w x z then the value of 
( , , )

......( , , )
 

u v w
x y z  

      A) 2        B) 4      C) 3     D) 2  
     Answer: B 
8. Which of the following statement is not TRUE? 

     A) Two functions ( ), ( ), , f gu x y v x y are functionally dependent if 
( , )

0( , )
 

u v
x y   

     B) If 
( , )

0( , )
 

u v
x y then ( ), ( ), , f gu x y v x y are functionally independent 

     C) The functions ,sin cos x xe eu y v y are functionally dependent  

     D) If 
( , , )
( , , )
 

u v w
J x y z and 

( , , )
( , , )

  
x y z

J u v w then 1J J  

 Answer: C 
9. Which of the following is a stationary point of 2 2 6 12( ),   y xf x y x   

        A) (0,3)   B) (3,0)     C) (0,2)    D) (0,0) 
     Answer: B 

10. If (0, 0), (2, 0) are extreme points of 3 2 2 23 3 3 7( , )     xy x yf x y x then min. ......f  

        A) 7     B) 8       C) 2   D) 3 
    Answer: D 

11. If ( , ),  ( , ),  ( , ),  xx xy yyr f a b f a b f a bs t then ( , )x yf  will have maximum at ( , )a b if   

       A)  2 0  and   0  rt s r   B)  2 0  and   0  rt s r   
    

 

      C)  2 0  and   0  rt s r   D)  2 0  and   0  rt s r  
 Answer: B 

12.  If  2&  ( , ),  ( , ),  ( , ) 0   xx xy yyr f a b f a b f a b rt ss t then ( , )x yf  will have 

       A) maximum at ( , )a b     B) minimum at ( , )a b   
    

 

      C) neither maximum nor minimum at ( , )a b  D) either maximum or minimum at ( , )a b  
 Answer: C 

 



 












